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Topological Spaces and Continuous Maps

. A metric space (X,d) is a set X with a function d : X2 — [0, c0) such that

o d(z,y) =0 <= xz=y.

o d(z,y) =d(y,x).

e d(z,2) < d(z,y) +d(y, 2).
)

. B(z,e) = {2’ € X | d(z,2') <€}
. f:(X,d) — (Y,d) is called continuous if Vz € X,Ve > 0,30 > 0, f(B(x,d)) C B(f(x),€).

. A topological space (X,9) is a set X with a set ¢ C F(X) of open sets such that

e ) Xe¥9.
[ ] {Aa}ael Cg — UQGIAQ Gg
° Al,AQEg = A1NAy; e ¥9.

. A metric space (X, d) introduces a topology by U € 4 <= Vz € U,3e > 0, B(x,¢) C U.
. Amap f:(X,d) — (Y,d) is continuous <= VA € %, f1(A) € ¥x. The right clause is

how continuity is defined for maps between topological spaces.

. In X = R", all p-norms |z|, = (3, |xl|p)% define metrics which define topologies; these

topologies coincide. This includes the case p = 0o where || 1= max;ep, [2:].

LI (X Y9x) = (Y% ) and g ¢ (Y, 9x) — (Z,9x) are continuous, then go f : (X,¥9x) —

(Z7 gz is.

. A constant map f:x +— c €Y is continuous.

The identity map id : (X,%) — (X, %) is continuous if and only if % C 4
We compare two topologies 4;,% on X as follows:

e &, is weaker or coarser than % if 4 C %; then % is called finer or stronger than % .

e These comparisons are qualified with " strictly” if the inclusions are strict.
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Subspaces and Homeomorphisms

. A set A C X is called closed if its complement is open.

. Let .# denote all closed sets of (X,¥). Then:

o )X cZ.
[ ] {Aa}ael Cﬁ - maelAa €ﬂ
e A, Abe ¥ — A1UAy e 7.

(X, 9x) — (X,%y) is continuous <= VC € Fy, f1(C) € Fx.

If Y C X then this induces a subspace topology as % ={Y NU | U € ¥x}.

. We have #y ={Y NC | C € Zx}.

. 1:Y = X, y+— yis continuous (Y, %) — (X,9x).

If ZCY C X, then ¢ induced by ¥x is the same as ¢, induced by %, where % is induced
by ¥x. In other words,

(ZAU|U=YNV,Ve%x}={ZnV |V c %}

. If Y C X is a subset of a metric space, then the subspace topology (Y, %) coincides with the

topology induced by the metric space (Y, d|yxy).

. If f: X — Z is continuous and f(X) CY, then f: X — Y is continuous.

If f: X — Z is continuous then f|y : Y — Z is continuous.

If {U; }ier is an open cover of X and f : X — Y has that f|y, : U; — Y is continuous for each
1 € I, then f is continuous.

If {C;}7, is a finite closed cover of X and f: X — Y has that f|¢, : C; — Y is continuous
for each ¢ € I, then f is continuous.

f: X — Y is called a homeomorphism if f is a continuous bijection with a continuous inverse.
f: X =Y is a homeomorphism if and only if VA, f71(A) € ¥x <= A€ %.

An embedding is a continuous injective map f : X — Y such that f : X — f(X) is a
homeomorphism.

An open neighbourhood of a point x € X is a subset U € 4 with x € U. A neighbourhood of
x is a subset V' C X such that z € U C V for some open neighbourhood U.

A map f: X — Y is continuous at a point x € X if for any neighbourhood V' of f(x), there
is a neighbourhood U of z with f(U) C V.

A map f: X — Y is continuous if and only if it is continuous at every point z € X.



3 Interiors and Closures, Bases and Finite Products

1. (Definitions)

interior: A°:=U{U € ¥ |U C A}
e closure: A:=nN{C c€C|AcCC}
e boundary: 94 := A\ A°
e AC X is dense if A = X.
e A C X is nowhere dense if (Z)O =0
2. (Min/max open set characterization)
e A°is the ”largest” open subset of A, i.e.
Ae¥9 A°CAandU €9, UCA = U C A°.

. E is the "smallest” closed subset containing A, i.e.
Ae FandCe F, ACcC = AcCC.

o Ac¥d «— A°=A.
e Ac.F «— A=A
e DAc ZF.

3. (Complement properties)

e A= (A°)e.
o A° = Ac,
e OA=AcNA

4. (In terms of neighbourhoods)

o A={z € X | every open neighbourhood U of x has U N A # (0}.
e JA ={z € X | every open neighbourhood U of x has UN A #( and U N A° £ (}.

5. A basis A is a subset of 4 such that every U € ¢ is Uy gV for a suitable B C #. Equivalently
VUe¥9 :NeelU:aVeAB:zecV CU.

6. If By is a basis for ¥y, then:
f:X =Y continuous <= VB € By, f~}(B) € ¥x.

7. By lecture 1, the open balls {B(z,€)}sex,e>0 form a basis for the metric topology in any
metric space.

8. If # C P(X) satisfies

o VB,Bo e ZVx € BN By dB3 € # x € B3 C By N By
e UB =X

Then ¥ = {UB | B C %} is a topology on X, and £ is a basis for 4. It is called the topology
generated by the basis B



9. For X,Y topological spaces, {U x V | U € ¥x,V € %} satisfies the above properties and
generates the so-called product topology on X x Y.

10. If Bx, By are bases for ¥x, %, then the product topology is also generated by {U x V|
U e gx, Ve %y}.

11. For topological spaces, the iterated product topologies on (X x Y) x Z and X x (Y x Z)
coincide, and its basis is

{U><V><W|U€€4X,V€£¢y,WG%Z}.
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Subbases and General Products

. If X5, Xo are topological spaces, define pr; : (z1,z2) — x;, X1 X X9 — X, for i =1,2.

. (Universal property of the product)

e pr; is continuous for i =1, 2.

o f:Z — X xY is continuous <= pr, o f is continuous for i =1, 2.

I f1 Y — Xy and fo 0 Y — X, are continuous, then f1 X fo 1 y = (f1(y), f2(y)) is continuous.

S C P(X) is called a subbasis of ¢ if all finite intersections of sets in .¥ form a basis of ¥.
This implies .¥ C 4.

. If .# is a subbasis of %, then: f: X — Y continuous <= VS € %, f~(5) € ¥x.

AN, B; | By,..., B, € .7} generates a topology on X if .¥ is a cover for X. Therefore any

cover of . C P (X) can act as a subbasis of some topology, which is {U;er Njes, Ui, | Ui j €
&, J; finite}.

If {9, }aer is a collection of topologies on X, then Nyec1%, is a topology on X. It is the finest
topology that is coarser than all ¥,.

. The topology generated by its subbasis . is the coarsest topology that contains S and equals

N{¥ | ¢4 topology on X,.¥ C ¥4}.

. The product topology on [, ; X; is the topology generated by {prj_l(Uj) |jel,Uje%9x,}.

(Universal property of the product)

e Vi € [, pr; is continuous.

o f:Z — X xY is continuous <= Vi € I,pr, o f is continuous.

If f : Y — X, is continuous for each ¢ € I, then the induced map f : y — (fi(y))icr is
continuous.

If I UI, = I is a partition of I, then (x;)ier — ((@:)icr,, (%i)icr,) is a homeomorphism
[ier Xi = T er Xo x ILicr, X

If J C I is infinite Vj € J,U; € ¥x;, then ﬁierrj_l(Uj) is not open in the product topology,
(note it contains no basis element).

The set {[[;c; Ui | Us € 9x, } generates a (strictly finer) topology, called the box topology

If .%; is a subbasis for ¥x, then {prj_l(Uj) | j € I,U; € .} is a subbasis for the product
topology on HJEI X;.

if f;: Z — X, is a family of maps, then the initial topology on Z generated by { f;}:cr is the
set {f;1(U;) | U; € 9x,}. This is the coarsest topology on Z making each f; continuous.

The product topology on Z = [],.; X; is the initial topology for {pr;}icr.
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Connectivity

. A topological space X is connected if there is no partition of X into two open, nonempty sets.
. U C X is called clopen if U €e ¥ N £.

. X is connected < F N¥Y = 0.

A C X is connected if it is connected when endowed the subspace topology.

. A C X is connected <= thereareno U,V € 4 withUNVNA=0,AcUUV,UNA#0,

VNA#DQ.

. (0,1) is connected.

AcC Bc X and B C A and A connected. Then B is connected.

. If f: X =Y is continuous and X is connected then f(X) is connected.

. If X, Y are homeomorphic, then X is connected <= Y is connected.

All intervals of R are connected.
Q is disconnected: QN (v/2,00), QN (—00,+/2) is a partition in open disjoint nonempty sets.
If f: X — R is continuous and f(z1) < ¢ < f(x2) then there is a z € X with f(x) =c.

If f: X — Y is continuous, we can define ¢ : X — X xY by ¢(z) = (z, f(z)) which

is continuous, hence if X connected then ¢(X) is (the graph graph(f)). graph(f) is also
connected.

A; is connected for each i € I and A; N A; # () for all 4,5 € I, then U;erA; is connected.

Define  ~ y <= there is a connected A C X with z,y € X. This is an equivalence relation.
Its equivalence classes are called connected components of X.

(a) If A C [z] and A is connected then [z] = A.
(b) [x] C X is connected.

(¢) [z] is closed.
A connected space has 0 (if X = 0) or 1 (if X # ()) connected components.
X is called totally disconnected if Vo € X, [z] = {«}.
Q is totally disconnected.

A homeomorphism f : X — Y induces a bijection between the connected components, i.e.
f([z]) = [f(x)] is well-defined X/ ~— Y/ ~ and a bijection.

A path from zy € X to z1 € X is a continuous map w : [0, 1] — X with w(0) = xg, w(l) = z;.

A space is called path connected if for any zg,x; € X there is a path from z( to ;.



23. Any path connected space is connected. The converse does not hold: namely graph(f), where
f is the topologist’s sine curve f(t) = sin%7 (0,1] — [-1,1], is connected but not path
connected.

24. define ¢ ~' y <= there is a path from x to y. This is an equivalence relation on X. The
equivalence classes [z]" are called path components.



10.

11.

12.
13.
14.
15.

16.

17.
18.

Compact Spaces

. A topological space is called Hausdorff or Ty if Vx,y € X,z £y = U,V e 4, UNV =

0,xelUyeV.

. Any metric space is Hausdorff.

. Any subspace of a Hausdorff space is Hausdorff.

Arbitrary products of Hausdorff spaces are Hausdorff.

. A topological space is called quasi-compact (other texts: compact) if V.9 C 4, U = X —

1’ C . finite, U = X.

. [0,1] is compact.

If X is quasi-compact and f: X — Y continuous then f(X) is also quasi-compact.

. If f: X - Y is a homeomorphism, then X is Hausdorff, quasi-compact or compact then Y

also has this property.

. For a < b, [a,b] is not homeomorphic to R or (a,b).

If X is quasi-compact and F' € Fx then F is compact as a subspace (Because their comple-
ment is open, so any open cover induces an open cover {Uy }oecr U{F¢} with a finite subcover
by quasi-compactness of X).

If X is Hausdorfl, Y C X is compact, z € X\Y, then there are disjoint U, Vin¥ with = € U,
YCV.

If X is Hausdorff and Y C X compact, then Y is closed in X.
f: X = Yiscalled closed it C € ¥x = f(C) € Fy.
f: X — Y continuous, X quasi-compact and Y Hausdorff. Then f is closed.

If f: X — Y is a continuous bijection with X quasi-compact and Y Hausdorff, then f is a
homeomorphism.

(Tube Lemma) If XY are topological spaces, Y is quasi-compact, zo € X, and W C X x Y
open with {9} x Y C W, then there is an open U C X with U x Y C W.

Tychonov’s Theorem) Arbitrary products of (quasi-)compact spaces are (quasi-)compact.
Y

A subset C' C R" is compact <= C is closed and bounded.
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Variants of Compactness

. 8= (Zn)nen & sequence in X, € X. Then z is called an

e (w-)accumulation point of s if VU € 4, x € U = {i € N| z; € U} is infinite.
e alimit of sif VU € 9,2 € U — IN € NVn > Nz, € U.

. In a Hausdorff space, a sequence has at most one limit.

. f:X =Y is continuous, and (z,),>1 is a sequence in X that has a limit «. Then f(x) is a

limit of (f(zn))n>1

. X is called

o first countable if every x € X has a countable neighbourhood base, i.e. a collection
{Un}n>1 of neighbourhoods of x such that for every neighbourhood U of z, there is a
n € N with U,, C U. Without loss of generality (take U/, := Nm < nU,,), U1, D Uz D ....

e second countable if it admits a countable basis.

. If X is first countable and f : X — Y is a map such that for any z € X and any sequence

(Tn)n>1 with limit =, f(z) is a limit for (f(zn))n>1, then f is continuous.

. A topological space is

Compact if it is Hausdorff and quasi-compact.

Countably compact it is Hausdorff and every countable open cover admits a finite sub-
cover.

Sequentially compact if every sequence (x,,),>1 admits a convergent subsequence.

Lindelof if every open cover admits a countable subcover.

. A Hausdorff space: is countably compact <= every sequence (z,),>1 admits an accumula-

tion point.

. Lindel6f and countably compact = compact.

. Separable metric spaces are second countable. In fact metrizable spaces are second countable

if and only if they are separable.
We have:

e Second countable = first countable.

e Second countable = Lindelof.
A Hausdorff space is called
A sequentially compact space is countably compact.
If X is first countable, Hasudorff, and countably compact, then it is sequenctially compact.

We have the following relations:

10



Sequentially compact = countably compact.

First countable: countably compact = sequentially compact

Compact = countably compact.

e Second countable: countably compact = sequentially compact
Hence, in second countable Hausdorff spaces, all three variants of compactness are equivalent.

15. A countably compact metric space (X,d) is second countable, therefore a metric space is
compact <= countably compact <= sequentially compact.

16. A metric space is called totally bounded if for any choice of € > 0, X can be covered with
finitely many e-balls.

17. A metric space is compact <= it is totally bounded and complete.

11
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The Cantor Set and the Peano Curve

. Every x € [0, 1] admits a ternary expansion z = Y.~ %, a; € {0,1,2}. Such an expansion is
not unique: Y oo & = .

. The Cantor set is N2, C;, where Cp = 1 and C} is obtained from C;_; by deleting the middle

third open interval from each consecutive interval of C;_;. C,, consists of 2" closed intervals

of length 37". Alternatively, C' = {322, % | a; € {0,2},Vi}. The Cantor set here inherits

the subspace topology from the Euclidean topology on [0, 1].

. (Properties of the Cantor set)

e (' is compact.
e (' does not contain any open interval (a,b) with a < b.

e C° =0, C is nowhere dense, and C is totally disconnected.

For elements x = 7, %,y =37, 2—7 with Vi, a;,b; € {0,2}:
o If V1 <i<ma; =0, then |z —y| <37™.
o If additionally a,, 41 # b1, then |z —y| > 3-(m+1),
o If [x —y| <37, then V1 <i<ma; =0

e fx=ythenVi>1a; =0

. For A C X, X a topological space, x € X is called

e a limit point of A if every neighbourhood U of x has at least one y € U N A with y # x;
o an isolated point if there is a neighbourhood U of  with U N A = {z¢}.

We see z is an isolated point of A <= {z} is open relative to A.

. Every x € C' is a limit point of C.

C —{0,2}" by 72, % — (a)32, is well-defined by 4. and a homeomorphism with respect
to the subspace topology on C' and the product topology on {0, 2}".

. There is a homeomorphism C' — C x C.

. (Differences between C and I = QN [0, 1])

e (' is uncountable, I is countable.
e (' is nowhere dense, I is dense in [0, 1].
e (' is compact, I is not closed.

e (C and I both have empty interior and no isolated points, and Lebesgue measure 0.
The map C — [0,1], 3277, & — sum$2, % - is continuous and surjective.

There is a continuous surjection f : [0,1] — [0,1] x [0,1] with f|c : C — C x C the homeo-
morphism mentioned in 8..

For each n > 1, there is a homeomorphism R — R".

12
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Quotient Spaces

If f: X — Y is surjective, X a topological space and Y a set:
o Gy ={VCY|[f'eYx}isa topology on Y.

e f is continuous with respect to this topology.

e ¢J; is the finest topology on Y for which f is continuous.

LI (V) e 9x = V € %) and f is continuous and surjective, then f is called an

identification. This means precisely %y = ¥.

. The composition of two identifications is an identification.

If f is bijective, then f is an identification <= f is a homeomorphism.

.If f: X — Y is an identification and h : X — Z is continuous such that Vzg,z; € X :

f(zo) = f(x1) = h(xo) = h(z1), then there is a unique g : Y — Z with gf = h. Moreover,
g is continuous.

. If X is a topological space with equivalence relation ~C X2, then we define a topology on

X/ ~ as ¥, where ¢ : x — [z] is the quotient map. ¢ is by definition an identification.

The arbitrary intersection N.c» ~ of equivalence relations, is an equivalence relation. For
A C X, one can define a smallest equivalence relation ~ 4 such that A x A C~4 (the equiva-
lence relation generated by A), and define X/A := X/ ~4.

. If X is connected, path connected or quasi-compact, so is X/ ~. Taking quotients does

generally not preserve the Hausdorff property: consider [0,2]/[0,1). Any open neighbourhood
of [1] contains [0].

o D" ={x e R"||z|]s < 1}.

o S ={r e R" ||z|y =1} =6D"HL.
D™, S™ are compact for n > 0.

e [0,1]/{0,1} = S*.

o S"TIX0] & pn

Sn—lx{l} -
D"
* opm =5

(Torus) Let:

e (5,0)~ (s,1) Vs €[0,1].
e (0,t) ~ (1,t) Vt € [0,1].

Then [0,1]2/ ~=2 S x 1.
(Mébius Band) Let:
o (0,8) ~ (1,1 —1t) Ve [0,1].

13



Then [0,1]2/ ~ is called the Mébius band.

13. (Klein Bottle) Let:

e (5,0)~ (s,1) Vs €]0,1].
o (0,t) ~ (1,1 —1t) Vte|0,1].

Then [0,1]?/ ~ is called the Klein bottle.

14
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Separation Axioms

. A topological space is called

Ty ifVe,ye X,o#¢y = Ve, xeclUy¢U.

o Ty or Hausdorff if Vz,ye X :x 4y = U,V e4,UNV=0zecUyecV.
e 3ifVC e F,xeC:3U,VeT :CCUzxzeV,VNU=.

e T4 ifVCy,Ch e F:ConNCr=0 = IU,VeT:CoCcUC, CV,VNU=0.

e T is equivalent to: Vo € X, {x} is closed.

e T3 is equivalent to: V& € X : YU open neighbourhood of z: 3C' closed neighbourhood of
r with C CU.

e T} is equivalent to: VC' € .Z, and all U open neighbourhood of C, there is an open
neighbourhood V of C' with V. C U.

e (Urysohn’s Lemma, Lecture 11)
Ty is equivalent to: VCy,C; C X closed nonempty disjoint subsets, there is a f : X —

[0,1] with f(Co) = {0}, f(C1) = {1}.
. A topological space is called
e Regular if it is T7 and T3.
e Normal if it is T} and Ty.

The definition is easy to check, but we have:
Normal (Ty + T4) = Regular (T} + T3) = Hausdorff (Tz) = T.

. Any compact space is normal.

. A second countable regular space X is metrizable (there is a metric d : X2 — [0,00)) such
that ¥x = %) (proof: use Urysohn’s lemma to construct an embedding X — [0,1]N and

metrize the latter space d(z,y) =Y 1o, |z — vi278(1 + |z — yi]) 7L

If X is a topological space and Y C X, and X a Tj-space for k = 1,2 or 3, then Y is also a

Ti-space.

. If X is a topological space and Y C X and Y is closed, and X is T}, then Y is a Ty-space
(this is because Fy C Fx).

. If {X;}ier is a collection of topological spaces, k € {1,2,3}. Then []
Xi is Tk.

icr XiisTy < Viel,

There is no such statement for general products of T, spaces.
For {X;}ier a collection of topological spaces,
i Hz‘eIXi = {(z,x) | 1€l,x € Xl}
o incl; : X — [,
o ACJ;c; X is called open if Vi € I, incl; *(A) is open in X;.

Xiisz— (i,2;)

15
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This defines the coproduct topology.

The quotient topology ¢, and the coproduct topology are a particular case of a final topology:
given a collection {f; : X; — Y},es this is the finest topology on Y such that each f; is
continuous.

If k€ {1,2,3,4}, then [[,.; X is Ty <= Viel, X;is Ty

A topological space X is disconnected <= X is homeomorphic to a coproduct of two

nonempty spaces.
Note that X is not homeomorphic to the disjoint union of its connected components.

Passing to a quotient space may destroy all separation properties: X = [0, 1] is compact and
therefore Ty, for k =1,2,3,4. Take A = X N Q, then X/A.

e {q(0)} € X/A is not closed since ¢~ ({q(0)}) = X/A is not. So X/A is not Tj.

e Therefore, X/A is not Hausdorff.

e For x € X irrational, {g(z)} C A is closed since ¢~ *((X/A)\{q(z)}) = X\{z} is open.
Any neighbourhood of x contains a rational number, so any neighbourhood of {g(x)}
contains ¢(0). Hence X/A is not Ts.

o If x,y € X are distinct and irrational, the same argument shows any pair of open
neighbourhoods of ¢(x) and ¢(y) intersect at ¢(0). Hence X/A is not Tj.

For f: X — Y, aset A C X is called saturated if f~'(f(4)) = A holds. If f is an
identification, f(U) is open in Y if U is saturated and open.

If f: X — Y is a closed identification, C' C X saturated and closed and U C X a closed
neighbourhood of C'. Then there is a saturated open neighbourhood V of C' with C C V C U.

Let X be normal and f: X — Y be a closed identification. Then Y is normal.

If X is compact and f: X — Y is an identification, then f is closed <= Y is Hausdorff.

16
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Extension Theorems
. d(z,A) ==infycad(z,y), d(-,A) : X — [0, 00).

. d(z, A) — d(y, A)| < d(z,y), so d(-, A) is Lipschitz continuous. If A € .7, then d(x, A) =
0 <= zecA

. (X,d) compact metric space, {U;}ier open cover of X, then there is an € > 0 with Vi € I :
Ve € X : B(z,e) CU;

(X, d) metric space and Cy,Cy € F, Cy # 0, C1 # 0, CoNCy = P. Then there is a continuous
[+ X —[0,1] with f(Co) = {0}, f(C1) = {1}.

. XisTy < VC € #, and all U open neighbourhood of C, there is an open neighbourhood
V of C with V C U.

. (Urysohn’s Lemma) If X is a topological space, then X is Ty <= for all Cy,C; C X closed
nonempty disjoint subsets, there is a f : X — [0,1] with f(Cp) = {0}, f(Cy) = {1}.

Metric spaces are normal.

. (Tietze’s Extension Theorem) If X is Ty and C' C X closed, then for every continuous g :
C — [0,1] there is a continuous f : X — [0,1] with f|c = g.

. This implies, immediately, the existence of a Peano curve based on the continous surjection
C—10,1], Y2 a3 b= >0 @27 L

A topological space X is called locally compact if it is Hausdorff and every neighbourhood
admits a compactt neighbourhood.

Compact spaces are locally compact. R™ is locally compact for n > 1.

If X is locally compact, U C X a neighbourhood of x € X, then U contains a compact
neighbourhood of z.

Locally compact spaces are regular (because, any neighbourhood U 3 z € X contains a
compact neighbourhood K, and K is compact, so is closed since X is Hausdorff, and this
means any neighbourhood of any € X contains a closed neighbourhood, which is equivalent
to T5. Hausdorff implies 7).

If X islocally compact and U C X is open, then U is locally compact in the subspace topology.

(One-point compactification topology) For X, write Xt = X U {P} with P ¢ X. Define
U C XT to be open if

e U C X and U is open in X.
e Pc U and XT\U is compact in X.

This forms a topology on X such that X is compact and X — X T is an embedding.

Any f: X — Y extends to f*: XT — YT with f|x = f and f(Px) = Py.

17



17.

18.

e If f is continuous, and additionally if K C Y is compact hen f~1(K) C X is compact,
fT is continuous.

e If X|Y, are locally compact and f is a homeomorphism, then T is a homeomorphism.
If X is compact and z¢ € X, then since X is T1, X \{z(} is open and therefore locally compact

as an open subspace of X locally compact. f: (X\{zo})"™ — X which sends P to zo and is
the identity on X \{xo} is a homeomorphism

Xn

+1 +1 . . .
For e,11 = (0,...,0,1) € R*™*! the north pole of S™ C R™*!, define the stereographic projection
and its inverse as:

h:S™"\{ent1} = R, (z0,...,xn) — (g ey Tn—1)

— T

AR S™"™\{ent1}, (Y1, Yn) — (2y1, ey 2Un, \y|2 -1

lyl> +1

h induces a homeomorphism (R™)* = S™.

18



12 The Fundamental Group

e — A pointed space (X, zg) is a topological space (X,¥) with 2o € X.
— A loop in X with basepoint z¢ € X is a path w : [0,1] = X with w(0) = w(1) = x¢

— A homotopy of loops from wy to w1 (loops with basepoint xy) is a continuous H : [0, 12 —
X with

*x H(s,1) = w;(s) fori=0,1, s € [0,1].
« H(i,t) =xz0 fori=0,1, ¢t € [0,1].

— Two loops wyg, wy are homotopic if there exists an endpoint-preserving homotopy of loops,
denoted wg ~, wi. This is an equivalence relation on all loops with basepoint zy. The
equivalence class of w is denoted [w]

e The fundamental group of (X, x¢) is denoted m1 (X, zg) = X/ ~4,= {[w] | w loop with basepoint xg}.
It is a group under [w] - [v] = [w * v] where * denotes concatenation of paths:
2t telo, i
—wxv(t) = w(2t) [1 2]
v(2t—-1) telz,1]
The inverse [w]~! = [w] where W(t) = w(1 — t).

— One needs to show that this is well-defined:
Vg Mpo V1, Wy gy W1 == Vg * Wy Xp, V1 * Wq.

In order to show associativity, (v * v) % w >~ u* (v * w)

In order to show the identity relation, const,, * v ~g, v

In order to show the inverse relation, w * w =~ consty, * v >, w * W.

e For every n > 1 and every zg € R", m1(R", zg) = {[consty,]}

For fo, f1 : X — Y continuous, a homotopy from fy to f1 is a continuous H : X x [0,1] = Y
with H(t,7) = fi(t) i = 1,2, t € [0,1]. This is an equivalence relation on C(X,Y).

e A homotopy of loops is a homotopy of maps wg,w; : [0,1] = X — Y with the extra condition
that H|{O,1}><[O,1] = COHStwO.

If f: X — Y is continuous and xg € X, then f induces a well-defined map of sets

Jo i m(X,20) = mi(Y, f(20)), [w]— [fouw]

Properties of f,:

— f is a group homomorphism: [f o (v*w)] = [(f ov) * (f ow)].
Iff: X =Y, g:Y — Z are continuous, (go f)s« = g« 0 fu

— (ldx)* = idﬂ'1(X,af0)~

— If f is a homeomorphism, f, is a group isomorphism. Its inverse is (fi)™! = (f 1)«

— This can be generalised: f, is an isomorphism already if f : X — Y is a homotopy
equivalence with g : Y — X continuous s.t. gf ~idx, fg ~ idy, then (f.)~! = g.. (see
Lecture 13).
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13

Fundamental Groups and Homotopy Equivalences
If X is a topological space and v a loop based at xg. Then v induces a group isomorphism
vs s (X, 0(0)) = m(X,0(1)), va(w]) = [(U* w) * ]

Note the explicit parentheses: this is because the concatenation done is not of loops but of
paths, so there is no associativity shown yet. Yet one can show (0% w) * v 2,(g) T * (w * v).

The above shows that m (X, z¢) is, up to isomorphism, invariant under continuous translation
of the basepoint.

If f: X =Y is continuous and v : [0,1] — X a path, f.ov. = (fov). o0 f.

f: X — Y continuous is called a homotopy equivalence if there is a continuous g : ¥ — X
with gf ~idx, fg ~idy.

Any homeomorphism is a homotopy equivalence.

If X is a topological space and H : [0,1]> — X continuous with H(0,0) = H(1,0), then in
m1 (X, H(0,0)), it holds:

[Hljo,1)x101] = [(H{oyx[0,1) * Hljo,11x 413 * H{13x[0,1]]

If f: X — Y is a homotopy equivalence with ¢ : Y — X continuous s.t. gf ~idx, fg ~ idy,
then (f.)~! = g. and f, is a group isomorphism.

Two spaces X, Y are called homotopy equivalent if there is a homotopy equivalence f : X — Y
(equivalence relation).

A space X is called contractible if it is homotopy equivalent to a one point space <= there
is a g € X with inclg, ) : @o = o is a homotopy equivalence.

A C X is called a deformation retract if there is a continuous r : X — A with r|4 = id4 and
a homotopy H : X x [0,1] — X from idx to inclyg o r such that H(x,t) = z for all ¢ and
x € A

If A C X is a deformation retract, then incly : A — X is a homotopy equivalence.

The converse is not true: the comb space
1
X ={0} x [0,1]U[0,1] x {O}U{Q—n |n€Zso} x10,]1]

is contractible to o = (0,0), but not deformation retractible to yo = (0,1), for example. If
there is a homotopy, that is a continuous map H : X x [0,1] — X with

H(-,0) =id, H({yo} x [0,1]) = {yo}, and H(X x {1}) = {0}

Then take the sequence x, = (27",1) (the tips of the comb’s teeth), x,, — o, and since
H(zy,-) is a path in X, let ¢, be the point at which H(x,,t,) = (27",0) (the point z,, has
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reached the base). Then by [0,1] compact, hence sequentially compact, pick a subsequence
tn, — t, then x,, — yo by convergence of x,,, so by continuity of H we get

H(xnwtnk) - H(y()vtA) =%
While by choice of ¢,, such that H(z,,t,) = (27™,0), we get

H(xnkvtnk) = (2nk,0) — X

Contradiction, since X is Hausdorff. This means any homotopy equivalence incly, yor >~ idx
will move some point x € A. Note that X still contracts to yg, because it contracts to xy and
then we use a path from zg to yo to construct a homotopy from incly,,; to inclg, 3.

— R*1\{0} has S™ as a deformation retract. Homotopy: H(x,t) = (1 — )+t
— D™ and R™ have {0} as a deformation retract. Homotopy: H(z,t) = (1 —t)z.
For n > 2 and sg € S™, m1(S™), s¢) is trivial.

Let S1 = {z € C | |2| = 1} and define exp : = + *™@ R — St let ¢, : [0,1] — S*,
©n(t) = exp(nt) = exp(t)”. Then ¢(n) = [p,] is a group isomorphism Z = (S, 1).

The proof requires theory developed in Lecture 14.

(Drum theorem): There is no continuous map r : D? — dD? with r|0D? = idype.
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14

Fundamental Groups and Covering Spaces

Preliminaries:

— ]_[iel X 2 ] x X, where I has the discrete topology and I x X has the product topology
induced by I and X.

— If X is a topological space and V; C X, if all V; are disjoint and open, then U;c;V; =
[lies Vi

For any 2 € S!, there is an open U, C S!, z € U, and a homeomorphism h : U xexp~({z}) —
exp 1 (U) where exp~1(U) C R has subspace topology and exp~*({z}) = {€ R | exp(z) = z}
has the discrete topology. In other words, exp~(U) = U

S' admits an open cover such {U;};c that for each y € R an each j € J with exp(y) € U;
there is an open V' C R such that exp |y : V' — Uj is a homeomorphism.

(Homotopy lifting property of exp) If F :[0,1] x [0,1] — S*, g : [0,1] — R continuous with
expog(s) = F(s,0) Vs € [0,1]. Then there is a unique continuous G : [0,1] x [0,1] — R with
expoG = F and G(s,0) = g(s) Vs € [0,1].

This means that local invertibility of exp is sufficient to lift F' to G (if exp were invertible, we
could trivially take G' = exp~! oF).

(Path lifitng property of exp) For [0,1] — S path and z € R with exp(x) = w(0), there is a
unique path v : [0,1] — R with expov = w and v(0) = «.

#(n) = [py] is a group isomorphism Z — m (St 1).

For B, E topological spaces, F is called a covering space for B if there is a surjective map
p: E — B withVz € B3U, € 9 : 3h : U x p~*({z}) — p~}(U) : h homeomorphism and p o
h = pry;. Here U x p~t({z}) carries the product topology, where p~1({z}) carries the discrete
topology. p is called a covering map.

X is called simply connected if X is path connected and 71 (X, z¢) is trivial for one (hence
any) xo € X.

A universal covering of a topological space B is a covering map p : E — B with F simply
connected.

exp is a universal covering R — S*.

If B is path connected and any neighbourhood of a (hence any) point 2 € B contains a path
connected neighbourhood U of x such that the induced map 71 (U, z) — 71(B,x) is trivial.
Then there is a universal covering p : £ — B.

For p a covering map, a deck transformation f : E — E is a homeomorphism such that
po f = p. The set of all deck transformations is denoted Aut(p) and is a group under function
composition.

>~

If p: E — Bis a universal cover of a path connected space B then for any zg € B, 71 (B, xo)
Aut(p).
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