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1 Topological Spaces and Continuous Maps

1. A metric space (X, d) is a set X with a function d : X2 → [0,∞) such that

• d(x, y) = 0 ⇐⇒ x = y.

• d(x, y) = d(y, x).

• d(x, z) ≤ d(x, y) + d(y, z).

2. B(x, ϵ) = {x′ ∈ X | d(x, x′) < ϵ}.

3. f : (X, d) → (Y, d) is called continuous if ∀x ∈ X,∀ϵ > 0,∃δ > 0, f(B(x, δ)) ⊂ B(f(x), ϵ).

4. A topological space (X,G ) is a set X with a set G ⊂ P(X) of open sets such that

• ∅, X ∈ G .

• {Aα}α∈I ⊂ G =⇒ ∪α∈IAα ∈ G .

• A1, A2 ∈ G =⇒ A1 ∩A2 ∈ G .

5. A metric space (X, d) introduces a topology by U ∈ G ⇐⇒ ∀x ∈ U,∃ϵ > 0, B(x, ϵ) ⊂ U .

6. A map f : (X, d) → (Y, d) is continuous ⇐⇒ ∀A ∈ GY , f
−1(A) ∈ GX . The right clause is

how continuity is defined for maps between topological spaces.

7. In X = Rn, all p-norms |x|p := (
∑n

i=1 |xi|p)
1
p define metrics which define topologies; these

topologies coincide. This includes the case p = ∞ where |x|∞ := maxi∈[n] |xi|.

8. If f : (X,GX) → (Y,GY ) and g : (Y,GX) → (Z,GX) are continuous, then g ◦ f : (X,GX) →
(Z,GZ is.

9. A constant map f : x 7→ c ∈ Y is continuous.

10. The identity map id : (X,G1) → (X,G2) is continuous if and only if G2 ⊂ G1

11. We compare two topologies G1,G2 on X as follows:

• G1 is weaker or coarser than G2 if G1 ⊂ G2; then G2 is called finer or stronger than G1.

• These comparisons are qualified with ”strictly” if the inclusions are strict.
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2 Subspaces and Homeomorphisms

1. A set A ⊂ X is called closed if its complement is open.

2. Let F denote all closed sets of (X,G ). Then:

• ∅, X ∈ F .

• {Aα}α∈I ⊂ F =⇒ ∩α∈IAα ∈ F .

• A1, A2 ∈ F =⇒ A1 ∪A2 ∈ F .

3. f : (X,GX) → (X,GY ) is continuous ⇐⇒ ∀C ∈ FY , f
−1(C) ∈ FX .

4. If Y ⊂ X then this induces a subspace topology as GY = {Y ∩ U | U ∈ GX}.

5. We have FY = {Y ∩ C | C ∈ FX}.

6. i : Y → X, y 7→ y is continuous (Y,GY ) → (X,GX).

7. If Z ⊂ Y ⊂ X, then GZ induced by GX is the same as GZ induced by GY where GY is induced
by GX . In other words,

{Z ∩ U | U = Y ∩ V, V ∈ GX} = {Z ∩ V | V ∈ GX}

8. If Y ⊂ X is a subset of a metric space, then the subspace topology (Y,GY ) coincides with the
topology induced by the metric space (Y, d|Y×Y ).

9. If f : X → Z is continuous and f(X) ⊂ Y , then f : X → Y is continuous.

10. If f : X → Z is continuous then f |Y : Y → Z is continuous.

11. If {Ui}i∈I is an open cover of X and f : X → Y has that f |Ui
: Ui → Y is continuous for each

i ∈ I, then f is continuous.

12. If {Ci}ni=1 is a finite closed cover of X and f : X → Y has that f |Ci
: Ci → Y is continuous

for each i ∈ I, then f is continuous.

13. f : X → Y is called a homeomorphism if f is a continuous bijection with a continuous inverse.

14. f : X → Y is a homeomorphism if and only if ∀A, f−1(A) ∈ GX ⇐⇒ A ∈ GY .

15. An embedding is a continuous injective map f : X → Y such that f : X → f(X) is a
homeomorphism.

16. An open neighbourhood of a point x ∈ X is a subset U ∈ G with x ∈ U . A neighbourhood of
x is a subset V ⊂ X such that x ∈ U ⊂ V for some open neighbourhood U .

17. A map f : X → Y is continuous at a point x ∈ X if for any neighbourhood V of f(x), there
is a neighbourhood U of x with f(U) ⊂ V .

18. A map f : X → Y is continuous if and only if it is continuous at every point x ∈ X.
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3 Interiors and Closures, Bases and Finite Products

1. (Definitions)

• interior: Ao := ∪{U ∈ G | U ⊂ A}
• closure: A := ∩{C ∈ C | A ⊂ C}
• boundary: ∂A := A\Ao

• A ⊂ X is dense if A = X.

• A ⊂ X is nowhere dense if
(
A
)o

= ∅

2. (Min/max open set characterization)

• Ao is the ”largest” open subset of A, i.e.
Ao ∈ G , Ao ⊂ A and U ∈ G , U ⊂ A =⇒ U ⊂ Ao.

• A is the ”smallest” closed subset containing A, i.e.
A ∈ F and C ∈ F , A ⊂ C =⇒ A ⊂ C.

• A ∈ G ⇐⇒ Ao = A.

• A ∈ F ⇐⇒ A = A.

• ∂A ∈ F .

3. (Complement properties)

• A = (Ao)c.

• Ao = Ac.

• ∂A = Ac ∩A

4. (In terms of neighbourhoods)

• A = {x ∈ X | every open neighbourhood U of x has U ∩A ̸= ∅}.
• ∂A = {x ∈ X | every open neighbourhood U of x has U ∩A ̸= ∅ and U ∩Ac ̸= ∅}.

5. A basis B is a subset of G such that every U ∈ G is ∪V ∈BV for a suitable B ⊂ B. Equivalently
∀U ∈ G : ∀x ∈ U : ∃V ∈ B : x ∈ V ⊂ U .

6. If BY is a basis for GY , then:
f : X → Y continuous ⇐⇒ ∀B ∈ BY , f

−1(B) ∈ GX .

7. By lecture 1, the open balls {B(x, ϵ)}x∈X,ϵ>0 form a basis for the metric topology in any
metric space.

8. If B ⊂ P(X) satisfies

• ∀B1, B2 ∈ B ∀x ∈ B1 ∩B2 ∃B3 ∈ B x ∈ B3 ⊂ B1 ∩B2

• ∪B = X

Then G = {∪B | B ⊂ B} is a topology on X, and B is a basis for G . It is called the topology
generated by the basis B
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9. For X,Y topological spaces, {U × V | U ∈ GX , V ∈ GY } satisfies the above properties and
generates the so-called product topology on X × Y .

10. If BX , BY are bases for GX , GY , then the product topology is also generated by {U × V |
U ∈ BX , V ∈ BY }.

11. For topological spaces, the iterated product topologies on (X × Y ) × Z and X × (Y × Z)
coincide, and its basis is
{U × V ×W | U ∈ GX , V ∈ GY ,W ∈ GZ}.
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4 Subbases and General Products

1. If X1, X2 are topological spaces, define pri : (x1, x2) 7→ xi, X1 ×X2 → Xi, for i = 1, 2.

2. (Universal property of the product)

• pri is continuous for i = 1, 2.

• f : Z → X × Y is continuous ⇐⇒ pri ◦ f is continuous for i = 1, 2.

3. If f1 : Y → X1 and f2 : Y → X2 are continuous, then f1×f2 : y 7→ (f1(y), f2(y)) is continuous.

4. S ⊂ P(X) is called a subbasis of G if all finite intersections of sets in S form a basis of G .
This implies S ⊂ G .

5. If SY is a subbasis of GY , then: f : X → Y continuous ⇐⇒ ∀S ∈ SY , f
−1(S) ∈ GX .

6. {∩n
i=1Bi | B1, ..., Bn ∈ S } generates a topology on X if S is a cover for X. Therefore any

cover of S ⊂ P(X) can act as a subbasis of some topology, which is {∪i∈I ∩j∈Ji
Ui,j | Ui,j ∈

S , Ji finite}.

7. If {Gα}α∈I is a collection of topologies on X, then ∩α∈IGα is a topology on X. It is the finest
topology that is coarser than all Gα.

8. The topology generated by its subbasis S is the coarsest topology that contains S and equals
∩{G | G topology on X,S ⊂ G }.

9. The product topology on
∏

i∈I Xi is the topology generated by {pr−1
j (Uj) | j ∈ I, Uj ∈ GXj

}.

10. (Universal property of the product)

• ∀i ∈ I, pri is continuous.

• f : Z → X × Y is continuous ⇐⇒ ∀i ∈ I, pri ◦ f is continuous.

11. If fi : Y → Xi is continuous for each i ∈ I, then the induced map f : y 7→ (fi(y))i∈I is
continuous.

12. If I1 ∪ I2 = I is a partition of I, then (xi)i∈I 7→ ((xi)i∈I1 , (xi)i∈I2) is a homeomorphism∏
i∈I Xi →

∏
i1∈I Xi ×

∏
i∈I2

Xi

13. If J ⊂ I is infinite ∀j ∈ J, Uj ∈ GXj , then ∩i∈Jpr
−1
j (Uj) is not open in the product topology,

(note it contains no basis element).

14. The set {
∏

i∈I Ui | Ui ∈ GXi
} generates a (strictly finer) topology, called the box topology

15. If Si is a subbasis for GXi then {pr−1
j (Uj) | j ∈ I, Uj ∈ Sj} is a subbasis for the product

topology on
∏

j∈I Xj .

16. if fi : Z → Xi is a family of maps, then the initial topology on Z generated by {fi}i∈I is the
set {f−1

i (Ui) | Ui ∈ GXi}. This is the coarsest topology on Z making each fi continuous.

17. The product topology on Z =
∏

i∈I Xi is the initial topology for {pri}i∈I .
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5 Connectivity

1. A topological space X is connected if there is no partition of X into two open, nonempty sets.

2. U ⊂ X is called clopen if U ∈ G ∩ F .

3. X is connected ⇐⇒ F ∩ G = ∅.

4. A ⊂ X is connected if it is connected when endowed the subspace topology.

5. A ⊂ X is connected ⇐⇒ there are no U, V ∈ G with U ∩ V ∩A = ∅, A ⊂ U ∪ V , U ∩A ̸= ∅,
V ∩A ̸= ∅.

6. (0, 1) is connected.

7. A ⊂ B ⊂ X and B ⊂ A and A connected. Then B is connected.

8. If f : X → Y is continuous and X is connected then f(X) is connected.

9. If X,Y are homeomorphic, then X is connected ⇐⇒ Y is connected.

10. All intervals of R are connected.

11. Q is disconnected: Q∩ (
√
2,∞), Q∩ (−∞,

√
2) is a partition in open disjoint nonempty sets.

12. If f : X → R is continuous and f(x1) < c < f(x2) then there is a x ∈ X with f(x) = c.

13. If f : X → Y is continuous, we can define φ : X → X × Y by φ(x) = (x, f(x)) which
is continuous, hence if X connected then φ(X) is (the graph graph(f)). graph(f) is also
connected.

14. Ai is connected for each i ∈ I and Ai ∩Aj ̸= ∅ for all i, j ∈ I, then ∪i∈IAi is connected.

15. Define x ∼ y ⇐⇒ there is a connected A ⊂ X with x, y ∈ X. This is an equivalence relation.
Its equivalence classes are called connected components of X.

16. (a) If A ⊂ [x] and A is connected then [x] = A.

(b) [x] ⊂ X is connected.

(c) [x] is closed.

17. A connected space has 0 (if X = ∅) or 1 (if X ̸= ∅) connected components.

18. X is called totally disconnected if ∀x ∈ X, [x] = {x}.

19. Q is totally disconnected.

20. A homeomorphism f : X → Y induces a bijection between the connected components, i.e.
f([x]) = [f(x)] is well-defined X/ ∼→ Y/ ∼ and a bijection.

21. A path from x0 ∈ X to x1 ∈ X is a continuous map w : [0, 1] → X with w(0) = x0, w(1) = x1.

22. A space is called path connected if for any x0, x1 ∈ X there is a path from x0 to x1.
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23. Any path connected space is connected. The converse does not hold: namely graph(f), where
f is the topologist’s sine curve f(t) = sin 1

t , (0, 1] → [−1, 1], is connected but not path
connected.

24. define x ∼′ y ⇐⇒ there is a path from x to y. This is an equivalence relation on X. The
equivalence classes [x]′ are called path components.
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6 Compact Spaces

1. A topological space is called Hausdorff or T2 if ∀x, y ∈ X,x ̸= y =⇒ ∃U, V ∈ G , U ∩ V =
∅, x ∈ U, y ∈ V .

2. Any metric space is Hausdorff.

3. Any subspace of a Hausdorff space is Hausdorff.

4. Arbitrary products of Hausdorff spaces are Hausdorff.

5. A topological space is called quasi-compact (other texts: compact) if ∀S ⊂ G ,∪S = X =⇒
∃S ′ ⊂ S finite, ∪ S ′ = X.

6. [0, 1] is compact.

7. If X is quasi-compact and f : X → Y continuous then f(X) is also quasi-compact.

8. If f : X → Y is a homeomorphism, then X is Hausdorff, quasi-compact or compact then Y
also has this property.

9. For a < b, [a, b] is not homeomorphic to R or (a, b).

10. If X is quasi-compact and F ∈ FX then F is compact as a subspace (Because their comple-
ment is open, so any open cover induces an open cover {Uα}α∈I ∪{F c} with a finite subcover
by quasi-compactness of X).

11. If X is Hausdorff, Y ⊂ X is compact, x ∈ X\Y , then there are disjoint U, V inG with x ∈ U ,
Y ⊂ V .

12. If X is Hausdorff and Y ⊂ X compact, then Y is closed in X.

13. f : X → Y is called closed if C ∈ FX =⇒ f(C) ∈ FY .

14. f : X → Y continuous, X quasi-compact and Y Hausdorff. Then f is closed.

15. If f : X → Y is a continuous bijection with X quasi-compact and Y Hausdorff, then f is a
homeomorphism.

16. (Tube Lemma) If X,Y are topological spaces, Y is quasi-compact, x0 ∈ X, and W ⊂ X × Y
open with {0} × Y ⊂ W , then there is an open U ⊂ X with U × Y ⊂ W .

17. (Tychonov’s Theorem) Arbitrary products of (quasi-)compact spaces are (quasi-)compact.

18. A subset C ⊂ Rn is compact ⇐⇒ C is closed and bounded.
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7 Variants of Compactness

1. s = (xn)n∈N a sequence in X, x ∈ X. Then x is called an

• (ω-)accumulation point of s if ∀U ∈ G , x ∈ U =⇒ {i ∈ N | xi ∈ U} is infinite.

• a limit of s if ∀U ∈ G , x ∈ U =⇒ ∃N ∈ N∀n ≥ Nxn ∈ U .

2. In a Hausdorff space, a sequence has at most one limit.

3. f : X → Y is continuous, and (xn)n≥1 is a sequence in X that has a limit x. Then f(x) is a
limit of (f(xn))n≥1

4. X is called

• first countable if every x ∈ X has a countable neighbourhood base, i.e. a collection
{Un}n≥1 of neighbourhoods of x such that for every neighbourhood U of x, there is a
n ∈ N with Un ⊂ U . Without loss of generality (take U ′

n := ∩m ≤ nUm), U1,⊃ U2 ⊃ ....

• second countable if it admits a countable basis.

5. If X is first countable and f : X → Y is a map such that for any x ∈ X and any sequence
(xn)n≥1 with limit x, f(x) is a limit for (f(xn))n≥1, then f is continuous.

6. A topological space is

• Compact if it is Hausdorff and quasi-compact.

• Countably compact it is Hausdorff and every countable open cover admits a finite sub-
cover.

• Sequentially compact if every sequence (xn)x≥1 admits a convergent subsequence.

• Lindelöf if every open cover admits a countable subcover.

7. A Hausdorff space: is countably compact ⇐⇒ every sequence (xn)n≥1 admits an accumula-
tion point.

8. Lindelöf and countably compact =⇒ compact.

9. Separable metric spaces are second countable. In fact metrizable spaces are second countable
if and only if they are separable.

10. We have:

• Second countable =⇒ first countable.

• Second countable =⇒ Lindelöf.

11. A Hausdorff space is called

12. A sequentially compact space is countably compact.

13. If X is first countable, Hasudorff, and countably compact, then it is sequenctially compact.

14. We have the following relations:
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• Sequentially compact =⇒ countably compact.

• First countable: countably compact =⇒ sequentially compact

• Compact =⇒ countably compact.

• Second countable: countably compact =⇒ sequentially compact

Hence, in second countable Hausdorff spaces, all three variants of compactness are equivalent.

15. A countably compact metric space (X, d) is second countable, therefore a metric space is
compact ⇐⇒ countably compact ⇐⇒ sequentially compact.

16. A metric space is called totally bounded if for any choice of ϵ > 0, X can be covered with
finitely many ϵ-balls.

17. A metric space is compact ⇐⇒ it is totally bounded and complete.
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8 The Cantor Set and the Peano Curve

1. Every x ∈ [0, 1] admits a ternary expansion x =
∑∞

i=0
ai

3i , ai ∈ {0, 1, 2}. Such an expansion is
not unique:

∑∞
i=m

2
3i = 1

3m−1 .

2. The Cantor set is ∩∞
i=1Ci, where C0 = 1 and Ci is obtained from Ci−1 by deleting the middle

third open interval from each consecutive interval of Ci−1. Cn consists of 2n closed intervals
of length 3−n. Alternatively, C = {

∑∞
i=1

ai

3i | ai ∈ {0, 2},∀i}. The Cantor set here inherits
the subspace topology from the Euclidean topology on [0, 1].

3. (Properties of the Cantor set)

• C is compact.

• C does not contain any open interval (a, b) with a < b.

• Co = ∅, C is nowhere dense, and C is totally disconnected.

4. For elements x =
∑∞

i=1
ai

3i , y =
∑∞

i=1
bi
3i with ∀i, ai, bi ∈ {0, 2}:

• If ∀1 ≤ i ≤ m ai = bi, then |x− y| ≤ 3−m.

• If additionally am+1 ̸= bm+1, then |x− y| ≥ 3−(m+1).

• If |x− y| < 3−m, then ∀1 ≤ i ≤ m ai = bi

• If x = y then ∀i ≥ 1 ai = bi

5. For A ⊂ X, X a topological space, x ∈ X is called

• a limit point of A if every neighbourhood U of x has at least one y ∈ U ∩A with y ̸= x;

• an isolated point if there is a neighbourhood U of x with U ∩A = {x0}.

We see x is an isolated point of A ⇐⇒ {x} is open relative to A.

6. Every x ∈ C is a limit point of C.

7. C → {0, 2}N by
∑∞

i=1
ai

3i 7→ (ai)
∞
i=1 is well-defined by 4. and a homeomorphism with respect

to the subspace topology on C and the product topology on {0, 2}N.

8. There is a homeomorphism C → C × C.

9. (Differences between C and I = Q ∩ [0, 1])

• C is uncountable, I is countable.

• C is nowhere dense, I is dense in [0, 1].

• C is compact, I is not closed.

• C and I both have empty interior and no isolated points, and Lebesgue measure 0.

10. The map C → [0, 1],
∑∞

i=1
ai

3i 7→ sum∞
i=1

ai

2
1
2i is continuous and surjective.

11. There is a continuous surjection f : [0, 1] → [0, 1] × [0, 1] with f |C : C → C × C the homeo-
morphism mentioned in 8..

12. For each n ≥ 1, there is a homeomorphism R → Rn.
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9 Quotient Spaces

1. If f : X → Y is surjective, X a topological space and Y a set:

• Gf = {V ⊂ Y | f−1 ∈ GX} is a topology on Y .

• f is continuous with respect to this topology.

• Gf is the finest topology on Y for which f is continuous.

2. If (f−1(V ) ∈ GX =⇒ V ∈ GY ) and f is continuous and surjective, then f is called an
identification. This means precisely GY = Gf .

3. The composition of two identifications is an identification.

4. If f is bijective, then f is an identification ⇐⇒ f is a homeomorphism.

5. If f : X → Y is an identification and h : X → Z is continuous such that ∀x0, x1 ∈ X :
f(x0) = f(x1) =⇒ h(x0) = h(x1), then there is a unique g : Y → Z with gf = h. Moreover,
g is continuous.

6. If X is a topological space with equivalence relation ∼⊂ X2, then we define a topology on
X/ ∼ as Gq where q : x 7→ [x] is the quotient map. q is by definition an identification.

7. The arbitrary intersection ∩∼∈S ∼ of equivalence relations, is an equivalence relation. For
A ⊂ X, one can define a smallest equivalence relation ∼A such that A×A ⊂∼A (the equiva-
lence relation generated by A), and define X/A := X/ ∼A.

8. If X is connected, path connected or quasi-compact, so is X/ ∼. Taking quotients does
generally not preserve the Hausdorff property: consider [0, 2]/[0, 1). Any open neighbourhood
of [1] contains [0].

9. • Dn = {x ∈ Rn | |x|2 ≤ 1}.
• Sn = {x ∈ Rn+1 | |x|2 = 1} = δDn+1.

Dn, Sn are compact for n ≥ 0.

10. • [0, 1]/{0, 1} ∼= S1.

• Sn−1×[0,1]
Sn−1×{1}

∼= Dn.

• Dn

∂Dn
∼= Sn.

11. (Torus) Let:

• (s, 0) ∼ (s, 1) ∀s ∈ [0, 1].

• (0, t) ∼ (1, t) ∀t ∈ [0, 1].

Then [0, 1]2/ ∼∼= S1 × S1.

12. (Möbius Band) Let:

• (0, t) ∼ (1, 1− t) ∀t ∈ [0, 1].
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Then [0, 1]2/ ∼ is called the Möbius band.

13. (Klein Bottle) Let:

• (s, 0) ∼ (s, 1) ∀s ∈ [0, 1].

• (0, t) ∼ (1, 1− t) ∀t ∈ [0, 1].

Then [0, 1]2/ ∼ is called the Klein bottle.
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10 Separation Axioms

1. A topological space is called

• T1 if ∀x, y ∈ X,x ̸= y =⇒ ∃U ∈ G , x ∈ U, y /∈ U .

• T2 or Hausdorff if ∀x, y ∈ X : x ̸= y =⇒ ∃U, V ∈ G , U ∩ V = ∅, x ∈ U, y ∈ V .

• T3 if ∀C ∈ F , x ∈ Cc : ∃U, V ∈ T : C ⊂ U, x ∈ V, V ∩ U = ∅.
• T4 if ∀C0, C1 ∈ F : C0 ∩ C1 = ∅ =⇒ ∃U, V ∈ T : C0 ⊂ U,C1 ⊂ V, V ∩ U = ∅.

2. • T1 is equivalent to: ∀x ∈ X, {x} is closed.

• T3 is equivalent to: ∀x ∈ X : ∀U open neighbourhood of x: ∃C closed neighbourhood of
x with C ⊂ U .

• T4 is equivalent to: ∀C ∈ F , and all U open neighbourhood of C, there is an open
neighbourhood V of C with V ⊂ U .

• (Urysohn’s Lemma, Lecture 11 )
T4 is equivalent to: ∀C0, C1 ⊂ X closed nonempty disjoint subsets, there is a f : X →
[0, 1] with f(C0) = {0}, f(C1) = {1}.

3. A topological space is called

• Regular if it is T1 and T3.

• Normal if it is T1 and T4.

4. The definition is easy to check, but we have:
Normal (T1 + T4) =⇒ Regular (T1 + T3) =⇒ Hausdorff (T2) =⇒ T1.

5. Any compact space is normal.

6. A second countable regular space X is metrizable (there is a metric d : X2 → [0,∞)) such
that GX = Gd) (proof: use Urysohn’s lemma to construct an embedding X → [0, 1]N and
metrize the latter space d(x, y) :=

∑∞
i=1 |xi − yi|2−i(1 + |xi − yi|)−1.

7. If X is a topological space and Y ⊂ X, and X a Tk-space for k = 1, 2 or 3, then Y is also a
Tk-space.

8. If X is a topological space and Y ⊂ X and Y is closed, and X is T4, then Y is a T4-space
(this is because FY ⊂ FX).

9. If {Xi}i∈I is a collection of topological spaces, k ∈ {1, 2, 3}. Then
∏

i∈I Xi is Tk ⇐⇒ ∀i ∈ I,
Xi is Tk.

10. There is no such statement for general products of T4 spaces.

11. For {Xi}i∈I a collection of topological spaces,

•
∐

i∈I Xi = {(i, x) | i ∈ I, x ∈ Xi}
• incli : Xi →

∐
i∈I Xi is x 7→ (i, xi)

• A ⊂
∐

i∈I Xi is called open if ∀i ∈ I, incl−1
i (A) is open in Xi.
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This defines the coproduct topology.

12. The quotient topology Gq and the coproduct topology are a particular case of a final topology :
given a collection {fi : Xi → Y }i∈I this is the finest topology on Y such that each fi is
continuous.

13. If k ∈ {1, 2, 3, 4}, then
∐

i∈I Xi is Tk ⇐⇒ ∀i ∈ I, Xi is Tk

14. A topological space X is disconnected ⇐⇒ X is homeomorphic to a coproduct of two
nonempty spaces.
Note that X is not homeomorphic to the disjoint union of its connected components.

15. Passing to a quotient space may destroy all separation properties: X = [0, 1] is compact and
therefore Tk for k = 1, 2, 3, 4. Take A = X ∩Q, then X/A.

• {q(0)} ∈ X/A is not closed since q−1({q(0)}) = X/A is not. So X/A is not T1.

• Therefore, X/A is not Hausdorff.

• For x ∈ X irrational, {q(x)} ⊂ A is closed since q−1((X/A)\{q(x)}) = X\{x} is open.
Any neighbourhood of x contains a rational number, so any neighbourhood of {q(x)}
contains q(0). Hence X/A is not T3.

• If x, y ∈ X are distinct and irrational, the same argument shows any pair of open
neighbourhoods of q(x) and q(y) intersect at q(0). Hence X/A is not T4.

16. For f : X → Y , a set A ⊂ X is called saturated if f−1(f(A)) = A holds. If f is an
identification, f(U) is open in Y if U is saturated and open.

17. If f : X → Y is a closed identification, C ⊂ X saturated and closed and U ⊂ X a closed
neighbourhood of C. Then there is a saturated open neighbourhood V of C with C ⊂ V ⊂ U .

18. Let X be normal and f : X → Y be a closed identification. Then Y is normal.

19. If X is compact and f : X → Y is an identification, then f is closed ⇐⇒ Y is Hausdorff.
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11 Extension Theorems

1. d(x,A) := infy∈A d(x, y), d(·, A) : X → [0,∞).

2. |d(x,A) − d(y,A)| ≤ d(x, y), so d(·, A) is Lipschitz continuous. If A ∈ F , then d(x,A) =
0 ⇐⇒ x ∈ A.

3. (X, d) compact metric space, {Ui}i∈I open cover of X, then there is an ϵ > 0 with ∀i ∈ I :
∀x ∈ X : B(x, ϵ) ⊂ Ui

4. (X, d) metric space and C0, C1 ∈ F , C0 ̸= ∅, C1 ̸= ∅, C0∩C1 = ∅. Then there is a continuous
f : X → [0, 1] with f(C0) = {0}, f(C1) = {1}.

5. X is T4 ⇐⇒ ∀C ∈ F , and all U open neighbourhood of C, there is an open neighbourhood
V of C with V ⊂ U .

6. (Urysohn’s Lemma) If X is a topological space, then X is T4 ⇐⇒ for all C0, C1 ⊂ X closed
nonempty disjoint subsets, there is a f : X → [0, 1] with f(C0) = {0}, f(C1) = {1}.

7. Metric spaces are normal.

8. (Tietze’s Extension Theorem) If X is T4 and C ⊂ X closed, then for every continuous g :
C → [0, 1] there is a continuous f : X → [0, 1] with f |C = g.

9. This implies, immediately, the existence of a Peano curve based on the continous surjection
C → [0, 1],

∑∞
i=1 ai3

−1 7→
∑∞

i=1 ai2
−i−1.

10. A topological space X is called locally compact if it is Hausdorff and every neighbourhood
admits a compactt neighbourhood.

11. Compact spaces are locally compact. Rn is locally compact for n ≥ 1.

12. If X is locally compact, U ⊂ X a neighbourhood of x ∈ X, then U contains a compact
neighbourhood of x.

13. Locally compact spaces are regular (because, any neighbourhood U ∋ x ∈ X contains a
compact neighbourhood K, and K is compact, so is closed since X is Hausdorff, and this
means any neighbourhood of any x ∈ X contains a closed neighbourhood, which is equivalent
to T3. Hausdorff implies T1).

14. IfX is locally compact and U ⊂ X is open, then U is locally compact in the subspace topology.

15. (One-point compactification topology) For X, write X+ = X ∪ {P} with P /∈ X. Define
U ⊂ X+ to be open if

• U ⊂ X and U is open in X.

• P ∈ U and X+\U is compact in X.

This forms a topology on X+ such that X+ is compact and X 7→ X+ is an embedding.

16. Any f : X → Y extends to f+ : X+ → Y + with f+|X = f and f(PX) = PY .

17



• If f is continuous, and additionally if K ⊂ Y is compact hen f−1(K) ⊂ X is compact,
f+ is continuous.

• If X,Y , are locally compact and f is a homeomorphism, then f+ is a homeomorphism.

17. If X is compact and x0 ∈ X, then since X is T1, X\{x0} is open and therefore locally compact
as an open subspace of X locally compact. f : (X\{x0})+ → X which sends P to x0 and is
the identity on X\{x0} is a homeomorphism

18. For en+1 = (

×n︷ ︸︸ ︷
0, ..., 0, 1) ∈ Rn+1 the north pole of Sn ⊂ Rn+1, define the stereographic projection

and its inverse as:

h : Sn\{en+1} → Rn, (x0, ..., xn) 7→
1

1− xn
(x0, ..., xn−1)

h−1 : Rn → Sn\{en+1}, (y1, ..., yn) 7→
1

|y|2 + 1
(2y1, ..., 2yn, |y|2 − 1)

h induces a homeomorphism (Rn)+ ∼= Sn.
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12 The Fundamental Group

• – A pointed space (X,x0) is a topological space (X,G ) with x0 ∈ X.

– A loop in X with basepoint x0 ∈ X is a path w : [0, 1] → X with w(0) = w(1) = x0

– A homotopy of loops from w0 to w1 (loops with basepoint x)) is a continuousH : [0, 1]2 →
X with

∗ H(s, i) = wi(s) for i = 0, 1, s ∈ [0, 1].

∗ H(i, t) = x0 for i = 0, 1, t ∈ [0, 1].

– Two loops w0, w1 are homotopic if there exists an endpoint-preserving homotopy of loops,
denoted w0 ≃x0 w1. This is an equivalence relation on all loops with basepoint x0. The
equivalence class of w is denoted [w]

• The fundamental group of (X,x0) is denoted π1(X,x0) = X/ ≃x0= {[w] | w loop with basepoint x0}.
It is a group under [w] · [v] = [w ∗ v] where ∗ denotes concatenation of paths:

– w ∗ v(t) =

{
w(2t) t ∈ [0, 1

2 ]

v(2t− 1) t ∈ [ 12 , 1]

– The inverse [w]−1 = [w] where w(t) = w(1− t).

– One needs to show that this is well-defined:
v0 ≃x0

v1, w0 ≃x0
w1 =⇒ v0 ∗ w0 ≃x0

v1 ∗ w1.

– In order to show associativity, (u ∗ v) ∗ w ≃x0
u ∗ (v ∗ w)

– In order to show the identity relation, constx0 ∗ v ≃x0 v

– In order to show the inverse relation, w ∗ w ≃x0 constx0 ∗ v ≃x0 w ∗ w.

• For every n ≥ 1 and every x0 ∈ Rn, π1(Rn, x0) = {[constx0
]}

• For f0, f1 : X → Y continuous, a homotopy from f0 to f1 is a continuous H : X × [0, 1] → Y
with H(t, i) = fi(t) i = 1, 2, t ∈ [0, 1]. This is an equivalence relation on C(X,Y ).

• A homotopy of loops is a homotopy of maps w0, w1 : [0, 1] = X → Y with the extra condition
that H|{0,1}×[0,1] = constx0

.

• If f : X → Y is continuous and x0 ∈ X, then f induces a well-defined map of sets

f∗ : π1(X,x0) → π1(Y, f(x0)), [w] 7→ [f ◦ w]

• Properties of f∗:

– f is a group homomorphism: [f ◦ (v ∗ w)] = [(f ◦ v) ∗ (f ◦ w)].
– If f : X → Y , g : Y → Z are continuous, (g ◦ f)∗ = g∗ ◦ f∗
– (idX)∗ = idπ1(X,x0).

– If f is a homeomorphism, f∗ is a group isomorphism. Its inverse is (f∗)
−1 = (f−1)∗

– This can be generalised: f∗ is an isomorphism already if f : X → Y is a homotopy
equivalence with g : Y → X continuous s.t. gf ≃ idX , fg ≃ idY , then (f∗)

−1 = g∗. (see
Lecture 13).
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13 Fundamental Groups and Homotopy Equivalences

• If X is a topological space and v a loop based at x0. Then v induces a group isomorphism

v∗ : π1(X, v(0)) → π1(X, v(1)), v∗([w]) = [(v ∗ w) ∗ v]

Note the explicit parentheses: this is because the concatenation done is not of loops but of
paths, so there is no associativity shown yet. Yet one can show (v ∗ w) ∗ v ≃v(0) v ∗ (w ∗ v).

• The above shows that π1(X,x0) is, up to isomorphism, invariant under continuous translation
of the basepoint.

• If f : X → Y is continuous and v : [0, 1] → X a path, f∗ ◦ v∗ = (f ◦ v)∗ ◦ f∗

• f : X → Y continuous is called a homotopy equivalence if there is a continuous g : Y → X
with gf ≃ idX , fg ≃ idY .

• Any homeomorphism is a homotopy equivalence.

• If X is a topological space and H : [0, 1]2 → X continuous with H(0, 0) = H(1, 0), then in
π1(X,H(0, 0)), it holds:

[H|[0,1]×{0}] = [(H{0}×[0,1] ∗H|[0,1]×{1} ∗H|{1}×[0,1]]

• If f : X → Y is a homotopy equivalence with g : Y → X continuous s.t. gf ≃ idX , fg ≃ idY ,
then (f∗)

−1 = g∗ and f∗ is a group isomorphism.

• Two spaces X,Y are called homotopy equivalent if there is a homotopy equivalence f : X → Y
(equivalence relation).

• A space X is called contractible if it is homotopy equivalent to a one point space ⇐⇒ there
is a x0 ∈ X with incl{x0} : x0 7→ x0 is a homotopy equivalence.

• A ⊂ X is called a deformation retract if there is a continuous r : X → A with r|A = idA and
a homotopy H : X × [0, 1] → X from idX to inclA ◦ r such that H(x, t) = x for all t and
x ∈ A.

• If A ⊂ X is a deformation retract, then inclA : A → X is a homotopy equivalence.

• The converse is not true: the comb space

X = {0} × [0, 1] ∪ [0, 1]× {0} ∪ { 1

2n
| n ∈ Z≥0} × [0, 1]

is contractible to x0 = (0, 0), but not deformation retractible to y0 = (0, 1), for example. If
there is a homotopy, that is a continuous map H : X × [0, 1] → X with

H(·, 0) = id, H({y0} × [0, 1]) = {y0}, and H(X × {1}) = {y0}

Then take the sequence xn = (2−n, 1) (the tips of the comb’s teeth), xn → y0, and since
H(xn, ·) is a path in X, let tn be the point at which H(xn, tn) = (2−n, 0) (the point xn has
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reached the base). Then by [0, 1] compact, hence sequentially compact, pick a subsequence
tnk

→ t̂, then xnk
→ y0 by convergence of xn, so by continuity of H we get

H(xnk
, tnk

) → H(y0, t̂) = y0

While by choice of tn such that H(xn, tn) = (2−n, 0), we get

H(xnk
, tnk

) = (2nk , 0) → x0

Contradiction, since X is Hausdorff. This means any homotopy equivalence incl{y0} ◦ r ≃ idX
will move some point x ∈ A. Note that X still contracts to y0, because it contracts to x0 and
then we use a path from x0 to y0 to construct a homotopy from incl{x0} to incl{y0}.

• – Rn+1\{0} has Sn as a deformation retract. Homotopy: H(x, t) = (1− t) x
|x| + tx.

– Dn and Rn have {0} as a deformation retract. Homotopy: H(x, t) = (1− t)x.

• For n ≥ 2 and s0 ∈ Sn, π1(S
n), s0) is trivial.

• Let S1 = {z ∈ C | |z| = 1} and define exp : x 7→ e2πix, R → S1, let φn : [0, 1] → S1,
φn(t) = exp(nt) = exp(t)n. Then ϕ(n) = [φn] is a group isomorphism Z ∼= π1(S

1, 1).

The proof requires theory developed in Lecture 14.

• (Drum theorem): There is no continuous map r : D2 → ∂D2 with r|∂D2 = id∂D2 .
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14 Fundamental Groups and Covering Spaces

• Preliminaries:

–
∐

i∈I X
∼= I ×X, where I has the discrete topology and I ×X has the product topology

induced by I and X.

– If X is a topological space and Vi ⊂ X, if all Vi are disjoint and open, then ∪i∈IVi
∼=∐

i∈I Vi.

• For any z ∈ S1, there is an open Uz ⊂ S1, z ∈ Uz and a homeomorphism h : U×exp−1({z}) →
exp−1(U) where exp−1(U) ⊂ R has subspace topology and exp−1({z}) = {∈ R | exp(x) = z}
has the discrete topology. In other words, exp−1(U) ∼= UZ

• S1 admits an open cover such {Uj}j∈J that for each y ∈ R an each j ∈ J with exp(y) ∈ Uj ,
there is an open V ⊂ R such that exp |V : V → Uj is a homeomorphism.

• (Homotopy lifting property of exp) If F : [0, 1] × [0, 1] → S1, g : [0, 1] → R continuous with
exp ◦g(s) = F (s, 0) ∀s ∈ [0, 1]. Then there is a unique continuous G : [0, 1]× [0, 1] → R with
exp ◦G = F and G(s, 0) = g(s) ∀s ∈ [0, 1].

This means that local invertibility of exp is sufficient to lift F to G (if exp were invertible, we
could trivially take G = exp−1 ◦F ).

• (Path lifitng property of exp) For [0, 1] → S1 path and x ∈ R with exp(x) = w(0), there is a
unique path v : [0, 1] → R with exp ◦v = w and v(0) = x.

• ϕ(n) = [φn] is a group isomorphism Z → π1(S
1, 1).

• For B,E topological spaces, E is called a covering space for B if there is a surjective map
p : E → B with ∀x ∈ B∃Ux ∈ GB : ∃h : U × p−1({x}) → p−1(U) : h homeomorphism and p ◦
h = prU . Here U×p−1({x}) carries the product topology, where p−1({x}) carries the discrete
topology. p is called a covering map.

• X is called simply connected if X is path connected and π1(X,x0) is trivial for one (hence
any) x0 ∈ X.

• A universal covering of a topological space B is a covering map p : E → B with E simply
connected.

• exp is a universal covering R → S1.

• If B is path connected and any neighbourhood of a (hence any) point x ∈ B contains a path
connected neighbourhood U of x such that the induced map π1(U, x) → π1(B, x) is trivial.
Then there is a universal covering p : E → B.

• For p a covering map, a deck transformation f : E → E is a homeomorphism such that
p◦f = p. The set of all deck transformations is denoted Aut(p) and is a group under function
composition.

• If p : E → B is a universal cover of a path connected space B then for any x0 ∈ B, π1(B, x0) ∼=
Aut(p).
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