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0. Preliminaries

From Analysis 2, we use:

Theorem 0.1. uniform convergence preserves continuity
If (fn)n, with fn : X → R a function on a compact metric space X, then

if fN → f uniformly, f is continuous.

Definition 0.2. For a sequence (an) ⊂ V where V is a vector space with a
metric d : V × V → [0,∞) (we need both a metric and additive structure),

the series
∑∞

n=0 an converges if the sequence of partial sums (
∑N

n=0 an)N
converges

Corrolary 0.3. Weierstraß’ M-test
If (fn)n, fn : X → V , (Mn)n ⊂ R and X is compact and V is a Banach

space, and ∀n ∈ N, ∀x ∈ X : |fn(x)| < Mn, and
∑∞

n=0 Mn converges in R,
then

∑∞
n=0 fn converges absolutely and uniformly on X.

Proof. We first show the Cauchy criterion holds and use completeness of V to
conclude. That is, we show:

∀ϵ > 0 : ∃N ∈ N : ∀m > n > N : ∀x ∈ X :

∣∣∣∣∣
m∑

k=n

|fn(x)|

∣∣∣∣∣ < ϵ

This follows simply from the fact that we can bound
∑m

k=n |fk(x)| <
∑m

k=n Mk

and
∑∞

n=0 Mn converges so we already have the Cauchy criterion for this series
and can conclude.

Therefore,
∑∞

n=0 fn converges absolutely pointwise, meaning to, say, F : X → V .
We next argue that this convergence is uniform: the sufficiently large N such
that the Cauchy criterion is satisfied, can be picked from the sequence Mn, and
thereby does not depend on x.
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Lemma 0.4. Let (V, |·|) be a Banach (complete normed) space. If
∑∞

k=0 ak con-
verges absolutely, meaning that

∑∞
k=0 |ak| converges, then

∑∞
k=0 ak converges.

Proof. SN =
∑N

k=0 ak converges if it is Cauchy, by completeness of V . We can
show the Cauchy criterion: for n ≥ m:

|Sn − Sm| = |
n∑

k=m+1

ak| ≤
n∑

k=m+1

|ak|

And since
∑∞

k=0 |ak| converges, it is Cauchy, therefore we conclude |Sn−Sm| < ϵ
for n ≥ m ≥ N sufficiently large.

1 Complex Numbers

Definition 1.1. C defined as algebraic extension C/R
We observe that f = X2 +1 ∈ R[X] is a monic, irreducible polynomial, and

R[X] is a principal ideal domain since R is a field. Therefore, there exists a
field extension R/K with α ∈ K and X2 + 1 the minimal polynomial of α, and
in particular K = R[α] ∼= R[X]/(X2 + 1). It is unique up to isomorphism, and
we denote it with C, while we denote α with i. In other words, C = R[i].

Definition 1.2. C as inner product space
We can also see Cn as a vector space C ∼= R2n, which is an inner product

space with ⟨·, ·⟩ : Cn × Cn → R defined as:

⟨a+ bi, c+ di⟩ := ac+ bd

Definition 1.3. C as normed space
The inner product induces a norm | · | : Cn → [0,∞) defined as:

|z| :=
√
⟨z, z⟩

which is also called the modulus in the context of complex analysis

Definition 1.4. C as metric space
The norm induces a metric d : Cn × Cn → [0,∞)

d(z, u) := |z − u|

Definition 1.5. conjugate
Note that if we define the conjugate

a+ bi := a− bi

then

⟨z, u⟩ =
n∑

k=0

zkuk =⇒ in C, |z|2 = zz
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and this immediately gives an expression for the inverse of any z ∈ C∗, namely

z−1 =
z

|z|2

Another view of C stems from the following field isomorphism:

φ : C → GL2(R)

φ(x+ iy) =

(
x y
−y x

)
Since φ satisfies the properties φ(z+u) = φ(z)+φ(u) and φ(zu) = φ(z)φ(u)

and f(1) = Id2, we get that φ is a ring homomorphism. Since C is a field, kerφ
is trivial and an isomorphism theorem gives:

φ(C) ∼= C

And thereby

φ(C) =
{(

x y
−y x

)
| x, y ∈ R

}
is a subfield of GL2(R). Note that:

det ◦φ = | · |2

Theorem 1.6. The complex exponential function

exp : z 7→
∞∑

n=0

zn

n!

is well-defined as the series converges, and is continuous.

Proof. We use Weierstraß’ M -test (C ∼= R2 is a Banach space) to show the
series converges on any compact disk of radius R > 0 around 0 in C, that is
D(0, R) := {z ∈ C | |z| ≤ R}.

Indeed, setting fn : D(0, R) → C through fn(z) :=
zn

n! , and choosing Mn =
Rn

n! , we see |fn| ≤ Rn

n! on DR and
∑∞

n=0
Rn

n! = eR.

So
∑∞

n=0
zn

n! converges absolutely and uniformly on D(0, R) for any R > 0,
therefore exp is well-defined. By uniform convergence, it follows we can ex-
change limits and the series, therefore it is continuous at any z ∈ C, because for
a ∈ D(0, R), we have limz→a exp(z) = limz→a

∑∞
n=0

zn

n! =
∑∞

n=0 limz→a
zn

n! =∑∞
n=0

an

n! = exp(a).

Theorem 1.7.
exp(z + w) = exp(z) exp(w)
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Proof.

exp(z + w) =

∞∑
n=0

(z + w)n

n!

=

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
zkwn−k

=

∞∑
n=0

∑
j,k≥0, j+k=n

1

j!k!
zkwn−k

Note that the above sum sums over every term 1
k!j!z

jwk for each (k, j) ∈ N×N
once. By absolute convergence we can apply Fubini’s theorem, and it follows
the series therefore equals

... =
∑

(k,j)∈N×N

zk

k!

wj

j!

Next, we note that z and w both lie in a disk DR of R = max{|z|, |w|}, and
z + w mus certainly lie within the disk D2R:

... =
∑
k∈N

zk

k!

∑
j∈N

wj

j!

= exp(z) exp(w)

Exercise 1.8. Prove that the following trigonometric and hyperbolic functions,
now defined for complex variable by the series

sinh(z) =

∞∑
k=0

z2k+1

(2k + 1)!
cosh(z) =

∞∑
k=0

z2k+1

(2k)!

sin(z) =

∞∑
k=0

(−1)2k+1z2k+1

(2k + 1)!
cos(z) =

∞∑
k=0

(−1)2kz2k+1

(2k)!

are well-defined and continuous in z ∈ C.

Proof. The exp-function will do all the work, since we already know that this
sequence converges. We can take termwise sums of convergent series, and this
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series necessarily also converges:

1

2
(exp(z)− exp(−z)) =

1

2

( ∞∑
k=0

zk

k!
−

∞∑
k=0

(−1)kzk

k!

)

=
1

2

∞∑
k=0

(1− (−1)k)zk

k!

=
1

2

∞∑
k=0

2z2k+1

(2k + 1)!

=

∞∑
k=0

z2k+1

(2k + 1)!
= sinh(z)

In the same way, we can show that

cosh(z) =
exp z + exp−z

2

cos(z) =
exp iz + exp−iz

2
= cosh(iz)

sin(z) =
exp iz − exp−iz

2i
= −i sinh(iz)

Corrolary 1.9. Euler’s identity

exp(iz) = cos z + i sin z

Definition 1.10. holomorphic functions
We say f : C → C is complexly differentiable at z ∈ C if there is a C ∈ C

with

lim
w→z

f(w)− f(z)− C · (w − z)

w − z
= 0

We call C the complex derivative of f at z. A complex differentiable function
is called holomorphic. Also, C is unique, namely

C = lim
w→z

f(w)− f(z)

w − z

And we define f ′(z) = C.

Remark 1.11. It is important to understand that having a complex derivative
is a stronger property than just being differentiable on C seen as R2. Recall a
function f : R2 → R2 is differentiable at z ∈ R2 if there is a 2 × 2-matrix D
such that

lim
w→z

f(w)− f(z)−D · (w − z)

|w − z|
= 0
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While if we view a holomorphic function as a function R2 → R2 (its real part be-
ing the first component and the imaginary part the second), then for the complex
derivative C = c1 + c2i we have:

C · (s1 + is2) = c1s1 − c2s2 + i(c1s2 + c2s1) =⇒(
c1s1 − c2s2
c2s1 + c1s2

)
= Ds =

(
d11s1 + d12s2
d21s1 + d22s2

)
=⇒

D =

(
c1 −c2
c2 c1

)
That is, f is holomorphic if and only

1. if it is differentiable when seen as a function f : R2 → R2.

2. its differential dzf is a skew-symmetric matrix, namely given by φ(C)

The skew-symmetry of the differential is a key property that makes holo-
morphic functions a special class of differentiable functions, and holomorphic
functions are one of the key motivations of doing a study of the analysis of C.

Definition 1.12. entirety
A function f : C → C is called entire if it is holomorphic at every z ∈ C.

Definition 1.13. regularity
A function f : C → C is called regular at a ∈ C if it is holomorphic at a

and f ′(a) ̸= 0.

Lemma 1.14. If f : C → C is holomorphic and locally invertible at z ∈ C,
then f is regular at z.

Proof. If f is locally invertible, i.e. there is an open U ∋ z and g : f(U) → U
with g(f(w)) = w for all w ∈ U , then we can use the inverse function theorem
to argue that g is differentiable (at least through R), and therefore we can apply
the chain rule to obtain the equality g′(f(z))f ′(z) = 1, which can only hold if
f ′(z) ̸= 0.

Theorem 1.15. The function exp is entire and its derivative at any z ∈ C is
exp z.

Proof. Note that for any z ∈ C,

exp(z + h)− exp(z)

h
= exp(z)

exp(h)− 1

h

In the latter fraction, we use the series expansion and make the division termwise:∑∞
n=0

hn

n! − 1

h
=

∞∑
n=1

hn−1

n!
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Since the convergence of the series is uniform, we can take the limit h → 0
through the summation. This means

lim
h→0

∞∑
n=1

hn−1

n!
= 1 +

∞∑
n=2

0n−1

n!
= 1

(Where I made the constant term explicit to avoid confusing 00 discussions).
We have, therefore, at every z ∈ C:

exp′(z) = lim
h→0

exp(z) · exp(h)− 1

h
= exp(z)
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