Complex Analysis, Summary

Matthijs Muis

March 4, 2024

Acknowledgement My collection of chapter summaries is based on the NWI-WB093: COMPLEX ANALYSIS (2023/24) by Wadim Zudilin. I changed little about the structure, except that I added a Preliminaries, and worked out the in-text exercises.

0. Preliminaries

From Analysis 2, we use:

Theorem 0.1. uniform convergence preserves continuity

If $(f_n)_n$, with $f_n : X \to \mathbb{R}$ a function on a **compact metric space** X, then if $fN \to f$ uniformly, f is continuous.

Definition 0.2. For a sequence $(a_n) \subset V$ where V is a vector space with a metric $d: V \times V \to [0, \infty)$ (we need both a **metric** and **additive structure**), the series $\sum_{n=0}^{\infty} a_n$ converges if the sequence of partial sums $(\sum_{n=0}^N a_n)_N$ converges

Corrolary 0.3. Weierstraß' M-test

If $(f_n)_n$, $f_n : X \to V$, $(M_n)_n \subset \mathbb{R}$ and X is **compact** and V is a **Banach space**, and $\forall n \in \mathbb{N}, \forall x \in X : |f_n(x)| < M_n$, and $\sum_{n=0}^{\infty} M_n$ converges in \mathbb{R} , then $\sum_{n=0}^{\infty} f_n$ converges absolutely and uniformly on X.

Proof. We first show the Cauchy criterion holds and use completeness of V to conclude. That is, we show:

$$\forall \epsilon > 0: \exists N \in \mathbb{N}: \forall m > n > N: \forall x \in X: \left| \sum_{k=n}^{m} |f_n(x)| \right| < \epsilon$$

This follows simply from the fact that we can bound $\sum_{k=n}^{m} |f_k(x)| < \sum_{k=n}^{m} M_k$ and $\sum_{n=0}^{\infty} M_n$ converges so we already have the Cauchy criterion for this series and can conclude.

Therefore, $\sum_{n=0}^{\infty} f_n$ converges absolutely pointwise, meaning to, say, $F: X \to V$. We next argue that this convergence is uniform: the sufficiently large N such that the Cauchy criterion is satisfied, can be picked from the sequence M_n , and thereby does not depend on x. **Lemma 0.4.** Let $(V, |\cdot|)$ be a Banach (complete normed) space. If $\sum_{k=0}^{\infty} a_k$ converges absolutely, meaning that $\sum_{k=0}^{\infty} |a_k|$ converges, then $\sum_{k=0}^{\infty} a_k$ converges.

Proof. $S_N = \sum_{k=0}^N a_k$ converges if it is Cauchy, by completeness of V. We can show the Cauchy criterion: for $n \ge m$:

$$|S_n - S_m| = |\sum_{k=m+1}^n a_k| \le \sum_{k=m+1}^n |a_k|$$

And since $\sum_{k=0}^{\infty} |a_k|$ converges, it is Cauchy, therefore we conclude $|S_n - S_m| < \epsilon$ for $n \ge m \ge N$ sufficiently large.

1 Complex Numbers

Definition 1.1. \mathbb{C} defined as algebraic extension \mathbb{C}/\mathbb{R}

We observe that $f = X^2 + 1 \in \mathbb{R}[X]$ is a monic, irreducible polynomial, and $\mathbb{R}[X]$ is a principal ideal domain since \mathbb{R} is a field. Therefore, there exists a field extension \mathbb{R}/K with $\alpha \in K$ and $X^2 + 1$ the minimal polynomial of α , and in particular $K = \mathbb{R}[\alpha] \cong \mathbb{R}[X]/(X^2 + 1)$. It is unique up to isomorphism, and we denote it with \mathbb{C} , while we denote α with i. In other words, $\mathbb{C} = \mathbb{R}[i]$.

Definition 1.2. \mathbb{C} as inner product space

We can also see \mathbb{C}^n as a vector space $\mathbb{C} \cong \mathbb{R}^{2n}$, which is an inner product space with $\langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{R}$ defined as:

$$\langle a+bi, c+di \rangle := ac+bd$$

Definition 1.3. \mathbb{C} as normed space

The inner product induces a norm $|\cdot| : \mathbb{C}^n \to [0,\infty)$ defined as:

$$|z| := \sqrt{\langle z, z \rangle}$$

which is also called the modulus in the context of complex analysis

Definition 1.4. \mathbb{C} as metric space

The norm induces a metric $d: \mathbb{C}^n \times \mathbb{C}^n \to [0,\infty)$

$$d(z, u) := |z - u|$$

Definition 1.5. conjugate

Note that if we define the conjugate

$$\overline{a+bi} := a-bi$$

then

$$\langle z, u \rangle = \sum_{k=0}^{n} z_k \overline{u_k} \implies in \mathbb{C}, \ |z|^2 = z\overline{z}$$

and this immediately gives an expression for the inverse of any $z \in \mathbb{C}^*$, namely

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$

Another view of \mathbb{C} stems from the following field isomorphism:

$$\varphi : \mathbb{C} \to \mathrm{GL}_2(\mathbb{R})$$
$$\varphi(x + iy) = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$$

Since φ satisfies the properties $\varphi(z+u) = \varphi(z) + \varphi(u)$ and $\varphi(zu) = \varphi(z)\varphi(u)$ and $f(1) = \mathrm{Id}_2$, we get that φ is a ring homomorphism. Since \mathbb{C} is a field, ker φ is trivial and an isomorphism theorem gives:

$$\varphi(\mathbb{C}) \cong \mathbb{C}$$

And thereby

$$\varphi(\mathbb{C}) = \left\{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \mid x, y \in \mathbb{R} \right\}$$

is a subfield of $GL_2(\mathbb{R})$. Note that:

$$\det \circ \varphi = |\cdot|^2$$

Theorem 1.6. The complex exponential function

$$\exp: z\mapsto \sum_{n=0}^\infty \frac{z^n}{n!}$$

is well-defined as the series converges, and is continuous.

Proof. We use Weierstraß' *M*-test ($\mathbb{C} \cong \mathbb{R}^2$ is a Banach space) to show the series converges on any compact disk of radius R > 0 around 0 in \mathbb{C} , that is $\overline{D}(0,R) := \{z \in \mathbb{C} \mid |z| \leq R\}.$

Indeed, setting $f_n : \overline{D}(0, R) \to \mathbb{C}$ through $f_n(z) := \frac{z^n}{n!}$, and choosing $M_n = \frac{R^n}{n!}$, we see $|f_n| \le \frac{R^n}{n!}$ on D_R and $\sum_{n=0}^{\infty} \frac{R^n}{n!} = e^R$. So $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ converges absolutely and uniformly on $\overline{D}(0, R)$ for any R > 0,

So $\sum_{n=0}^{\infty} \frac{z}{n!}$ converges absolutely and uniformly on D(0, R) for any R > 0, therefore exp is well-defined. By uniform convergence, it follows we can exchange limits and the series, therefore it is continuous at any $z \in \mathbb{C}$, because for $a \in \overline{D}(0, R)$, we have $\lim_{z\to a} \exp(z) = \lim_{z\to a} \sum_{n=0}^{\infty} \frac{z^n}{n!} = \sum_{n=0}^{\infty} \lim_{z\to a} \frac{z^n}{n!} = \sum_{n=0}^{\infty} \frac{a^n}{n!} = \exp(a).$

Theorem 1.7.

$$\exp(z+w) = \exp(z)\exp(w)$$

Proof.

$$\exp(z+w) = \sum_{n=0}^{\infty} \frac{(z+w)^n}{n!}$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} z^k w^{n-k}$$
$$= \sum_{n=0}^{\infty} \sum_{j,k \ge 0, \ j+k=n} \frac{1}{j!k!} z^k w^{n-k}$$

Note that the above sum sums over every term $\frac{1}{k!j!}z^jw^k$ for each $(k,j) \in \mathbb{N} \times \mathbb{N}$ once. By absolute convergence we can apply Fubini's theorem, and it follows the series therefore equals

$$\dots = \sum_{(k,j) \in \mathbb{N} \times \mathbb{N}} \frac{z^k}{k!} \frac{w^j}{j!}$$

Next, we note that z and w both lie in a disk D_R of $R = \max\{|z|, |w|\}$, and z + w mus certainly lie within the disk D_{2R} :

$$\dots = \sum_{k \in \mathbb{N}} \frac{z^k}{k!} \sum_{j \in \mathbb{N}} \frac{w^j}{j!}$$
$$= \exp(z) \exp(w)$$

Exercise 1.8. Prove that the following trigonometric and hyperbolic functions, now defined for complex variable by the series

$$\sinh(z) = \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!} \qquad \qquad \cosh(z) = \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k)!}$$
$$\sin(z) = \sum_{k=0}^{\infty} \frac{(-1)^{2k+1} z^{2k+1}}{(2k+1)!} \qquad \qquad \cos(z) = \sum_{k=0}^{\infty} \frac{(-1)^{2k} z^{2k+1}}{(2k)!}$$

are well-defined and continuous in $z \in \mathbb{C}$.

Proof. The exp-function will do all the work, since we already know that this sequence converges. We can take termwise sums of convergent series, and this

series necessarily also converges:

$$\frac{1}{2} \left(\exp(z) - \exp(-z) \right) = \frac{1}{2} \left(\sum_{k=0}^{\infty} \frac{z^k}{k!} - \sum_{k=0}^{\infty} \frac{(-1)^k z^k}{k!} \right)$$
$$= \frac{1}{2} \sum_{k=0}^{\infty} \frac{(1 - (-1)^k) z^k}{k!}$$
$$= \frac{1}{2} \sum_{k=0}^{\infty} \frac{2z^{2k+1}}{(2k+1)!}$$
$$= \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!} = \sinh(z)$$

In the same way, we can show that

$$\cosh(z) = \frac{\exp z + \exp -z}{2}$$
$$\cos(z) = \frac{\exp iz + \exp -iz}{2} = \cosh(iz)$$
$$\sin(z) = \frac{\exp iz - \exp -iz}{2i} = -i\sinh(iz)$$

Corrolary 1.9. Euler's identity

$$\exp(iz) = \cos z + i \sin z$$

Definition 1.10. holomorphic functions

We say $f : \mathbb{C} \to \mathbb{C}$ is complexly differentiable at $z \in \mathbb{C}$ if there is a $C \in \mathbb{C}$ with

$$\lim_{w \to z} \frac{f(w) - f(z) - C \cdot (w - z)}{w - z} = 0$$

We call C the **complex derivative** of f at z. A complex differentiable function is called **holomorphic**. Also, C is unique, namely

$$C = \lim_{w \to z} \frac{f(w) - f(z)}{w - z}$$

And we define f'(z) = C.

Remark 1.11. It is important to understand that having a complex derivative is a stronger property than just being differentiable on \mathbb{C} seen as \mathbb{R}^2 . Recall a function $f : \mathbb{R}^2 \to \mathbb{R}^2$ is differentiable at $z \in \mathbb{R}^2$ if there is a 2×2 -matrix D such that

$$\lim_{w \to z} \frac{f(w) - f(z) - D \cdot (w - z)}{|w - z|} = 0$$

While if we view a holomorphic function as a function $\mathbb{R}^2 \to \mathbb{R}^2$ (its real part being the first component and the imaginary part the second), then for the complex derivative $C = c_1 + c_2 i$ we have:

$$C \cdot (s_1 + is_2) = c_1 s_1 - c_2 s_2 + i(c_1 s_2 + c_2 s_1) \Longrightarrow$$
$$\binom{c_1 s_1 - c_2 s_2}{c_2 s_1 + c_1 s_2} = Ds = \binom{d_{11} s_1 + d_{12} s_2}{d_{21} s_1 + d_{22} s_2} \Longrightarrow$$
$$D = \binom{c_1 - c_2}{c_2 - c_1}$$

That is, f is holomorphic if and only

- 1. if it is differentiable when seen as a function $f : \mathbb{R}^2 \to \mathbb{R}^2$.
- 2. its differential $d_z f$ is a skew-symmetric matrix, namely given by $\varphi(\overline{C})$

The skew-symmetry of the differential is a key property that makes holomorphic functions a special class of differentiable functions, and holomorphic functions are one of the key motivations of doing a study of the analysis of \mathbb{C} .

Definition 1.12. entirety

A function $f : \mathbb{C} \to \mathbb{C}$ is called **entire** if it is holomorphic at every $z \in \mathbb{C}$.

Definition 1.13. regularity

A function $f : \mathbb{C} \to \mathbb{C}$ is called **regular** at $a \in \mathbb{C}$ if it is holomorphic at a and $f'(a) \neq 0$.

Lemma 1.14. If $f : \mathbb{C} \to \mathbb{C}$ is holomorphic and locally invertible at $z \in \mathbb{C}$, then f is regular at z.

Proof. If f is locally invertible, i.e. there is an open $U \ni z$ and $g: f(U) \to U$ with g(f(w)) = w for all $w \in U$, then we can use the inverse function theorem to argue that g is differentiable (at least through \mathbb{R}), and therefore we can apply the chain rule to obtain the equality g'(f(z))f'(z) = 1, which can only hold if $f'(z) \neq 0$.

Theorem 1.15. The function exp is entire and its derivative at any $z \in \mathbb{C}$ is exp z.

Proof. Note that for any $z \in \mathbb{C}$,

$$\frac{\exp(z+h) - \exp(z)}{h} = \exp(z)\frac{\exp(h) - 1}{h}$$

In the latter fraction, we use the series expansion and make the division termwise:

$$\frac{\sum_{n=0}^{\infty} \frac{h^n}{n!} - 1}{h} = \sum_{n=1}^{\infty} \frac{h^{n-1}}{n!}$$

Since the convergence of the series is uniform, we can take the limit $h \to 0$ through the summation. This means

$$\lim_{h \to 0} \sum_{n=1}^{\infty} \frac{h^{n-1}}{n!} = 1 + \sum_{n=2}^{\infty} \frac{0^{n-1}}{n!} = 1$$

(Where I made the constant term explicit to avoid confusing 0^0 discussions). We have, therefore, at every $z \in \mathbb{C}$:

$$\exp'(z) = \lim_{h \to 0} \exp(z) \cdot \frac{\exp(h) - 1}{h} = \exp(z)$$