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0. Preliminaries

From Analysis 2, we use:

Theorem 0.1. uniform convergence preserves continuity
If (fn)n, with f, : X = R a function on a compact metric space X, then
if fN — f uniformly, f is continuous.

Definition 0.2. For a sequence (a,) C V where V is a vector space with a
metric d : V x V — [0,00) (we need both a metric and additive structure),
the series Zzozo an, converges if the sequence of partial sums (ZQLO an)N
converges

Corrolary 0.3. Weierstrafs’ M-test

If (fi)n, fn: X =V, (M), CR and X is compact and V is a Banach
space, and Vn € N, Vo € X : |fu(x)] < M,, and 3,7 M, converges in R,
then ZZO:O fn converges absolutely and uniformly on X.

Proof. We first show the Cauchy criterion holds and use completeness of V' to
conclude. That is, we show:
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This follows simply from the fact that we can bound Y ;" |fe(z)] < >pe,, My
and > 7, M, converges so we already have the Cauchy criterion for this series
and can conclude.

Therefore, ZZO:() fn converges absolutely pointwise, meaning to, say, F': X — V.
We next argue that this convergence is uniform: the sufficiently large N such
that the Cauchy criterion is satisfied, can be picked from the sequence M,,, and
thereby does not depend on . O



Lemma 0.4. Let (V,||) be a Banach (complete normed) space. If >3, aj con-
verges absolutely, meaning that Y -, |ax| converges, then >~ ar converges.

Proof. Sy = ngv:o ay, converges if it is Cauchy, by completeness of V. We can
show the Cauchy criterion: for n > m:

n

Su—Sul =1 > al< >

k=m+1 k=m+1

And since Y7~ |ax| converges, it is Cauchy, therefore we conclude | S, —S,| < €
for n > m > N sufficiently large.
O

1 Complex Numbers

Definition 1.1. C defined as algebraic extension C/R

We observe that f = X2 +1 € R[X] is a monic, irreducible polynomial, and
R[X] is a principal ideal domain since R is a field. Therefore, there ezists a
field extension R/K with o € K and X% + 1 the minimal polynomial of o, and
in particular K = R[a] = R[X]/(X? + 1). It is unique up to isomorphism, and
we denote it with C, while we denote « with i. In other words, C = R[i].

Definition 1.2. C as inner product space
We can also see C™ as a vector space C = R?™, which is an inner product
space with (-,-) : C™ x C* = R defined as:

(a+bi,c+di) := ac+bd

Definition 1.3. C as normed space
The inner product induces a norm | -|: C" — [0,00) defined as:

|2l = V/(z,2)
which is also called the modulus in the context of complex analysis

Definition 1.4. C as metric space
The norm induces a metric d : C* x C* — [0, 00)

d(z,u) := |z — u|

Definition 1.5. conjugate
Note that if we define the conjugate

a+bi:=a—0b
then
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and this immediately gives an expression for the inverse of any z € C*, namely
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Another view of C stems from the following field isomorphism:

¢ : C — GL2(R)

oz +iy) = <_my z)

Since ¢ satisfies the properties p(z+u) = ¢(z) +¢(u) and p(zu) = p(2)p(u)
and f(1) = Idg, we get that ¢ is a ring homomorphism. Since C is a field, ker
is trivial and an isomorphism theorem gives:

p(C)=C

w0 ={(2, U)1syer}

is a subfield of GL2(RR). Note that:

And thereby

detop = | - |2

Theorem 1.6. The complex exponential function

[e.e] Zn
exp: z E —
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1s well-defined as the series converges, and is continuous.

Proof. We use Weierstrafy’ M-test (C =2 R? is a Banach space) to show the
series converges on any compact disk of radius R > 0 around 0 in C, that is
D(0,R) :={z€C||z| <R}

Indeed, setting f,, : D(0, R) — C through f,(z) := %, and choosing M,, =
we see |fn| < &7 on D and 3000 £F = €f.

So Y, ;—7: converges absolutely and uniformly on D(0, R) for any R > 0,
therefore exp is well-defined. By uniform convergence, it follows we can ex-
change limits and the series, therefore it is continuous at any z € C, because for

n

a € D(0,R), we have lim,_,q exp(2) = lim.—,q Y p g 27 = oo o lim. Zn—? =
ZZO:O S = exp(a). U
Theorem 1.7.
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Proof.
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Note that the above sum sums over every term - 2 w” for each (k,j) € Nx N
once. By absolute convergence we can apply Fubini’s theorem, and it follows
the series therefore equals
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Next, we note that z and w both lie in a disk Dg of R = max{|z|,|w|}, and
z + w mus certainly lie within the disk Dap:
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= exp(z) exp(w)
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Exercise 1.8. Prove that the following trigonometric and hyperbolic functions,
now defined for complex variable by the series

i 2k+1 i 2k+1
sinh(z cosh(z) =
£ (2k + 1)) P
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are well-defined and continuous in z € C.

Proof. The exp-function will do all the work, since we already know that this
sequence converges. We can take termwise sums of convergent series, and this



series necessarily also converges:

1 L 2d (D)
5 (exp(z) — exp(—=2)) = by (Z ko Z (k)'>

In the same way, we can show that
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2
cos(z) = w = cosh(iz)
sin(z) = e){p”;ﬂ = —isinh(iz)
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Corrolary 1.9. Fuler’s identity
exp(iz) = cosz +isinz

Definition 1.10. holomorphic functions
We say f : C — C is complexly differentiable at z € C if there is a C € C

with
o J@) = 1)~ C - (w—2)
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We call C the complex derivative of f at z. A complex differentiable function
is called holomorphic. Also, C is unique, namely
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And we define f'(z) = C.

Remark 1.11. [t is important to understand that having a complex derivative
is a stronger property than just being differentiable on C seen as R?. Recall a
function f : R? — R? is differentiable at z € R? if there is a 2 x 2-matriz D

such that
L Jw) ~ f(2) =D (w—2)

=0
w—z |w — 2]




While if we view a holomorphic function as a function R? — R? (its real part be-
ing the first component and the imaginary part the second), then for the complex
dertvative C = c1 + 21 we have:

C - (s1+1is2) = c181 — caSa +i(c182 + cas1) =

€181 — C289 di151 + di2s2
(0251 + 0132) 5 (d2181 + d2232)

That is, f is holomorphic if and only

1. if it is differentiable when seen as a function f : R? — R2.

2. its differential d. f is a skew-symmetric matriz, namely given by o(C)

The skew-symmetry of the differential is a key property that makes holo-
morphic functions a special class of differentiable functions, and holomorphic
functions are one of the key motivations of doing a study of the analysis of C.

Definition 1.12. entirety
A function f: C — C is called entire if it is holomorphic at every z € C.

Definition 1.13. regularity
A function f : C — C is called regular at a € C if it is holomorphic at a

and f'(a) # 0.

Lemma 1.14. If f : C — C is holomorphic and locally invertible at z € C,
then f is reqular at z.

Proof. If f is locally invertible, i.e. there is an open U 3 z and g : f(U) = U
with g(f(w)) = w for all w € U, then we can use the inverse function theorem
to argue that g is differentiable (at least through R), and therefore we can apply
the chain rule to obtain the equality ¢’'(f(z))f’(z) = 1, which can only hold if

f'(z) #0. O

Theorem 1.15. The function exp is entire and its derivative at any z € C is
exp z.

Proof. Note that for any z € C,

exp(z + h) — exp(z)
h

exp(h) —1
h

= exp(2)
In the latter fraction, we use the series expansion and make the division termwise:
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Since the convergence of the series is uniform, we can take the limit h — 0
through the summation. This means
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(Where I made the constant term explicit to avoid confusing 0° discussions).
We have, therefore, at every z € C:
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