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Exercise 2.4 Let f: ) — C be holomorphic on a connected domain Q C C
and A = 92, + agy be the Laplacian. Show

A(If)P) = 4lf (=)
Proof. Write f = u + iv where u = u(x,y), v = v(z,y) where x = Rz, y = Sz.
Since f is holomorphic, it is C%(£2) and therefore u and v are C?(2), so applying
Theorem 2.3, v and v are harmonic. We have:
A(FI2) = O2u? + 02,0% + 02, u® + 02, 0°

= 2ud2, u + 2(0yu)?

+ 2002, v + 2(0,v)?

+ 2u0§yu + 2(0yu)?

+ 2v3§yv +2(0yv)?

= 2uAu + 2vAv + 2((0,u)? + (Oyu)* + (0xv)* + (9,v)?)

= 2((0u)? + (9yu)* + (0,0)* + (9,v)?)

Where the final equality follows from Theorem 2.3 because u and v are harmonic,
so their Laplacians vanish. Using Cauchy-Riemann’s equalities: 0,u = 9yv and

Oyu = —0,v, we have:
A(f1?) = o = 2((00w)? + (9yu)? + (8,0)* + (3yv)?)
2((0pu)? 4 (—0,v)% + (0,0)* + (0,u)?)
= 2(2(0,v)? + 2(9,u)?)
4((0,v)* + (0,u)?)

While
Af1P = 4l0,u + 0,0 = 4((0,0)* + (9,0))

. This completes the proof: A(|f(2)|?) = 4((0,v(2))? + (9u(2))?) = 4|f’(z)[§



Exercise 2.7 For a holomorphic map f : 2 — C show that the following are
equivalent:

|f] is constant;

Proof. (i) = (ii): let f be constant, so there is a z € C with f(z) = ¢ for
all z € Q. Then Rf(z) = R(c) for all z € Q, therefore Rf is constant on €.
Similarly Sf(z) = S(c) for all z € Q, so Sf is constant on . This proves (ii).

(il) = (iii). f is holomorphic, so it has a complex derivative, which is
(due to Theorem 2.1) given by

F(2) = Opu(2) +i0,v(z), 2z €Q

But v and v are Rf and S f respectively, and these are assumed to be constant
and therefore have 0,u = 0 and O,v = 0. This implies f' = O,u + 10,v =
0 + 40 = 0 in the domain €.

(iii) = (iv). f/ = 0in the domain. f can also be regarded as map  — R?
where 2 C R?, in which case it is differentiable (because it is holomorphic, and
holomorphicity is stronger than differentiability in R? — R?) and its jacobian

at all z € Q is
(e —c2 (0 0
pr=(o )= o)

Since f/(z) = ¢1 +icy = 0+ i0. Now, |f| may not be holomorphic as z — |z| is
not. However, z — |f(2)|? = u?(2) + v*(z) where f = u + iv, is differentiable
when regarded as a function Q@ — R, since u and v are differentiable. By
Opu = 0yv = Oyu = Oyv = 0 (see the Jacobian), we have:

(| f1?) = 2udpu + 200,v =0, Oy (|fI*) = 2udyu + 2v9,v = 0

Therefore, |f|* has 0,(| f|?) = 0 and 9, (| f|*) = 0, and we know that it is totally
differentiable, so from Analysis 2 it follows that |f|? is contant on 2. From this
it immediately follows that |f| = 1/|f]? is also constant on €.

(iv) = (i): If | f| is constant on 2 then |f|? is constant on (2, therefore if
f = u+iv we have |f|?> = u? + v? is constant. Since f is holomorphic, u and v
have partial derivatives, and in particular since 9, (| f|?) = 0 and 9, (| f|?) = 0 (as
f is a constant function 2 — R, so use analysis 2 again), we get the equalities:

2ud,u + 208,v = 8, (| f[*) = 0
2udyu + 200, = 9, (| f*) =0

By holomorphicity, 0,u = dyv and dyu = —0,v, and substituting this leads to



2udyv + 200, = 95 (| f1?)
—2u8y’l) + 200,v = ar(|f‘2)

0
0

Adding these equations gives 4vd,v = 0 on the domain. Since v and J,v are
both continuous on 2, this can only hold if {v = 0} U {0,v = 0} = Q. Assume
for a contradiction that there is an open D C Q with d,v # 0 on D. The
openness is possible by continuity of d,v. By v0,v = 0, we need that v = 0 on
D. This means v is constant on an open subset D of Q. So d,v(z) = 0 for an
(interior) point z € D (Analysis 2, applied to a function 2 — R), contradicting
our assumption that d,v # 0 on D. This shows d,v = 0 everywhere. We
had 9.|f|* = 2ud,u + 2vd,v, therefore 2ud,u = 0 because 9,|f|*> = 0 and
200,v = 0. From 2ud,u = 0, it follows O,u = 0 by the same argument as
applied to v: assume J,u # 0 somewhere, then it must be # 0 on an open set
D €, therefore v = 0 on that open set, but then d,u(z) = 0 for interior points
z € D, contradiction. Hence both d,u and 0,v are 0 on €.
Finally f' = 0,u +i0,v = 0+ 140 = 0 on Q. This proves (ii), but we need to
prove (i). (ii) = (i) is precisely Theorem 2.4, so we conclude (i).
Having shown (i) = (ii) = (iii) = (iv) = (i), we conclude equivalence.
O

Exercise 3.2 Denote

M = limsup |a,|/" € [0, <]
n—roo
Take R = 1/M (so that R = oo when M =0 and R = 0 when M = o0). Prove
that the series Y~ an(z —a)™ converges for all z € C if R = oo; it converges
for all z € D(a, R) if R > 0 is finite, and diverges for all z # a if R = 0.

Proof. We use the root criterion for testing series convergence:

If (¢n)52 is a sequence in R, then the series Y -, ¢, converges ab-
solutely if limsup,, _, . |c,|*/™ < 1, diverges if limsup,,_, . [c.|*/" >
1.

e If R =0, then M = oo, in other words (supj>.,, |an|*™)nen is unbounded.
For z = a, we have > ° 1 a,(z — a) = ap converges, while for z # a, we
have, for ¢, = a,(z — a)”, that |c,|/" = |a,|"/™|z — a|, and therefore

|1/k |1/lc

sup |cg
k>n

— % — af sup s
k>n

Since |z—a| > 0, this sequence (in n) grows unboundedly, i.e. limsup,,_,__ |c,|'/" =

oo. Therefore, Y07 j¢, = Y 00 s an(z — a)™ diverges and it follows the

series diverges for z # a.



e If R € (0,00). Then if |z —a| < R=1/M, i.e. z € D(a, R), we have (in
the second equality, we can take the |z — a| through lim sup because it is

a nonnegative real number).
lim sup |an (z — a)"|*/"

= limsup |z — a||an|"/™

li 1/n
= |2 — a| lim sup |a, |V/" < —22MPn—oo |an|
n— 00 M

S
M

hence by the root criterion, applied to the sequence ¢, = a,(z — a)™,

Yoo o an(z—a)™ converges absolutely for all z € D(a, R). If |z—a| > R =

1/M, then we see
lim sup |an (z — a)"|*/" |1/

= limsup |z — al|a,

li 1/n
= |2 — a| lim sup |a,|V/" > —22Pn—oo |an|
n— 00 M

:—:1
M

Therefore te series Y-, an(z —a)™ diverges by the root criterion. So we
have absolute convergence for z € D(a, R) and divergence for |z —a|] > R

o If R =00, then M =0, hence if z € C (which we could write as |z — a| <
00), we have

lim sup |a,, (z — a)”|1/" = lim sup |O|1/" =0<1
n— o0 n— 00

hence by the root criterion, applied to the sequence ¢, = a,(z — a)",
oo gan(z — a)™ converges absolutely for all z € C.

O

Exercise 3.3

(a) For z € D(0,1), compute the limit
o)
>
n=1

(b) Show that for each k > 0, there exists a polynomial Py(t) € Z[t] with
integer coefficients of degree k — 1 such that

— P
Z nkan — k(2)
~ (1 — z)k+1



Proof. (a) We already have that Y " 2" = = holds on the disk D(0,1),
and the latter is analytic at a = 0. Therefore, apply Theorem 3.2 to
f(z) = - and R = 1, a = 0 and the given series, so we can conclude
that on the same disk:

Z”Z (1iz):<1—1z>2

(b) In (a), we showed the base case k = 1 for Pi(z) = 1 is a polynomial.
Next, assume k£ > 1. By the induction hypothesis, we already have a
(k — 2)-degree polynomial P,_; with integer coefficients such that:

Pr—1
an ln_ f_i)g

and that particular the right hand side converges on the disk D(0,1).
Theorem 3.2 gives that on D(0,1):

nknl de 1()
Z a2 (= o)

Note that we added the term nz"™ for n = 0 since it is 0. Also, we can use
convergence on the disk to take a factor z € D(0,1) through the series:

_d P
Z" - 1k—i))

Finally, we obtain the derlvatlve of the right side through the quotient
rule, which is indeed valid for z € D(0, 1) since (1 — 2)¥ # 0 there:

zi Pe1(z) Z—k‘(l — 2" P (2) = (1= 2)"F_(2)
dz (1+ 2)F (1—2z)%
B —kzPy_1(2) — 2(1 — 2)P_,(2)
o (1 — z)k+1

Clearly, —kzP;_1(z) has degree k — 2+ 1 = k — 1 and integer coeffi-
cients. z(1— z)Pj_,(z) too, since we take a derivative, and differentiation
of a polynomial P yields a polynomial P’ as derivative, and the coeffi-
cients stay integers as they are integer multiples of the coefficients of P,
so differentiation is an operation Z[z] — Z[z] which decreases the degree
of the polynomial by 1. We then add 2 to the degree by multiplication
with z(1 — z) and this gives a degree k —2 — 1+ 2 = k — 1 Z-coefficient
polynomial. We therefore get a recursion for Py, namely

Pu(2) = —kzPi_1(2) — 2(1 — 2) P, _1(2)
The right hand side is an integer-coefficient polynomial of degree k —
1 because —kzPy_1(z) and z(1 — z)P}_,(z) both are integer-coefficient

polynomials of degree k — 1
O



Exercise 4.3 Compute the integral of f(z) = z™(on the domain C*) over the
unit disk for any (positive and negative) integer n.

Proof. For n >0, f(z) = 2" is holomorpic on a star-shaped domain, namely C.
Since the unit circle S = {z € C: |z| = 1} is a closed contour, ¢ f(z)dz = 0 by
Theorem 4.2. This covers the case n > 0.

For n < 0, this does not hold since the function is not defined at z = 0.

We perform the explicit calculation using the parametrization v : [0,1] — S,
’}/(t) _ eQﬂ'it:
For n = —1,

fsf (2)dz = /01(62”“)‘1d(62m)

1
— / 27Tz'(62ﬂit)—1627ritdt
0

1
:/ 2midt = 271
0

For n < —1, n+1 < 0 and we get a different equality:

§ 1= | (it

— / 27TZ'(627rit)7L627Titdt
0

1
= / 2mie2(ntmit gy
0
) 1
_ |: 2mi 27 (n+1)it
2mi(n+ 1) 0
21l
- _1-1)=0
2mi(n + 1)( )

Problem 1.11(a) Determine a € C such that

u = €37 cos(ay)

is harmonic.
Proof.
Au = (82, + 02,)(c> cos(ay))
= cos(ay)0?,e> + e3x8§y cos(ay)
= 9¢37 cos(ay) — a*e3 cos(ay)

= (9 — a*)e3* cos(ay)



And we need Au = 0, so this only holds if > = 9, so necessarily ¢ = 3 or
a = —3. Note that these two choices give the same function u since cos(ay) =
cos(—ay). O

Problem 1.11(c) Determine a,b € C such that
u = az> + by?

is harmonic

Proof.
Au = (02, + 8§y)(a3:3 + by?)
=02 ax® + ajyby3
= 6azx + 6by
This is the zero function if and only if @ = —b. There are no further restrictions
on a and b, only that a = —b and that b € C. O



