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Exercise 2.4 Let f : Ω → C be holomorphic on a connected domain Ω ⊂ C
and ∆ = ∂2

xx + ∂2
yy be the Laplacian. Show

∆
(
|f(z)|2

)
= 4|f ′(z)|2

Proof. Write f = u+ iv where u = u(x, y), v = v(x, y) where x = ℜz, y = ℑz.
Since f is holomorphic, it is C2(Ω) and therefore u and v are C2(Ω), so applying
Theorem 2.3, u and v are harmonic. We have:

∆(|f |2) = ∂2
xxu

2 + ∂2
xxv

2 + ∂2
yyu

2 + ∂2
yyv

2

= 2u∂2
xxu+ 2(∂xu)

2

+ 2v∂2
xxv + 2(∂xv)

2

+ 2u∂2
yyu+ 2(∂yu)

2

+ 2v∂2
yyv + 2(∂yv)

2

= 2u∆u+ 2v∆v + 2((∂xu)
2 + (∂yu)

2 + (∂xv)
2 + (∂yv)

2)

= 2((∂xu)
2 + (∂yu)

2 + (∂xv)
2 + (∂yv)

2)

Where the final equality follows from Theorem 2.3 because u and v are harmonic,
so their Laplacians vanish. Using Cauchy-Riemann’s equalities: ∂xu = ∂yv and
∂yu = −∂xv, we have:

∆(|f |2) = ... = 2((∂xu)
2 + (∂yu)

2 + (∂xv)
2 + (∂yv)

2)

= 2((∂xu)
2 + (−∂xv)

2 + (∂xv)
2 + (∂xu)

2)

= 2(2(∂xv)
2 + 2(∂xu)

2)

= 4((∂xv)
2 + (∂xu)

2)

While
4|f ′|2 = 4|∂xu+ i∂xv|2 = 4((∂xu)

2 + (∂xv)
2)

. This completes the proof: ∆(|f(z)|2) = 4((∂xv(z))
2 + (∂xu(z))

2) = 4|f ′(z)|2
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Exercise 2.7 For a holomorphic map f : Ω → C show that the following are
equivalent:

(i) f is constant;

(ii) ℜf and ℑf are constant;

(iii) f ′ = 0;

(iv) |f | is constant;

Proof. (i) =⇒ (ii): let f be constant, so there is a z ∈ C with f(z) = c for
all z ∈ Ω. Then ℜf(z) = ℜ(c) for all z ∈ Ω, therefore ℜf is constant on Ω.
Similarly ℑf(z) = ℑ(c) for all z ∈ Ω, so ℑf is constant on Ω. This proves (ii).

(ii) =⇒ (iii). f is holomorphic, so it has a complex derivative, which is
(due to Theorem 2.1) given by

f ′(z) = ∂xu(z) + i∂xv(z), z ∈ Ω

But u and v are ℜf and ℑf respectively, and these are assumed to be constant
and therefore have ∂xu = 0 and ∂xv = 0. This implies f ′ = ∂xu + i∂xv =
0 + i0 = 0 in the domain Ω.

(iii) =⇒ (iv). f ′ = 0 in the domain. f can also be regarded as map Ω → R2,
where Ω ⊂ R2, in which case it is differentiable (because it is holomorphic, and
holomorphicity is stronger than differentiability in R2 → R2) and its jacobian
at all z ∈ Ω is

Dzf =

(
c1 −c2
c2 c1

)
=

(
0 0
0 0

)
Since f ′(z) = c1 + ic2 = 0 + i0. Now, |f | may not be holomorphic as z 7→ |z| is
not. However, z 7→ |f(z)|2 = u2(z) + v2(z) where f = u + iv, is differentiable
when regarded as a function Ω → R, since u and v are differentiable. By
∂xu = ∂xv = ∂yu = ∂yv = 0 (see the Jacobian), we have:

∂x(|f |2) = 2u∂xu+ 2v∂xv = 0, ∂y(|f |2) = 2u∂yu+ 2v∂yv = 0

Therefore, |f |2 has ∂x(|f |2) = 0 and ∂y(|f |2) = 0, and we know that it is totally
differentiable, so from Analysis 2 it follows that |f |2 is contant on Ω. From this
it immediately follows that |f | =

√
|f |2 is also constant on Ω.

(iv) =⇒ (i): If |f | is constant on Ω then |f |2 is constant on Ω, therefore if
f = u+ iv we have |f |2 = u2 + v2 is constant. Since f is holomorphic, u and v
have partial derivatives, and in particular since ∂x(|f |2) = 0 and ∂y(|f |2) = 0 (as
f is a constant function Ω → R, so use analysis 2 again), we get the equalities:

2u∂xu+ 2v∂xv = ∂x(|f |2) = 0

2u∂yu+ 2v∂yv = ∂y(|f |2) = 0

By holomorphicity, ∂xu = ∂yv and ∂yu = −∂xv, and substituting this leads to
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2u∂yv + 2v∂xv = ∂x(|f |2) = 0

−2u∂yv + 2v∂xv = ∂x(|f |2) = 0

Adding these equations gives 4v∂xv = 0 on the domain. Since v and ∂xv are
both continuous on Ω, this can only hold if {v = 0} ∪ {∂xv = 0} = Ω. Assume
for a contradiction that there is an open D ⊂ Ω with ∂xv ̸= 0 on D. The
openness is possible by continuity of ∂xv. By v∂xv = 0, we need that v = 0 on
D. This means v is constant on an open subset D of Ω. So ∂xv(z) = 0 for an
(interior) point z ∈ D (Analysis 2, applied to a function Ω → R), contradicting
our assumption that ∂xv ̸= 0 on D. This shows ∂xv = 0 everywhere. We
had ∂x|f |2 = 2u∂xu + 2v∂xv, therefore 2u∂xu = 0 because ∂x|f |2 = 0 and
2v∂xv = 0. From 2u∂xu = 0, it follows ∂xu = 0 by the same argument as
applied to v: assume ∂xu ̸= 0 somewhere, then it must be ̸= 0 on an open set
D ⊂ Ω, therefore u = 0 on that open set, but then ∂xu(z) = 0 for interior points
z ∈ D, contradiction. Hence both ∂xu and ∂xv are 0 on Ω.

Finally f ′ = ∂xu+ i∂xv = 0+ i0 = 0 on Ω. This proves (ii), but we need to
prove (i). (ii) =⇒ (i) is precisely Theorem 2.4, so we conclude (i).

Having shown (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i), we conclude equivalence.

Exercise 3.2 Denote

M = lim sup
n→∞

|an|1/n ∈ [0,∞]

Take R = 1/M (so that R = ∞ when M = 0 and R = 0 when M = ∞). Prove
that the series

∑∞
n=0 an(z − a)n converges for all z ∈ C if R = ∞; it converges

for all z ∈ D(a,R) if R > 0 is finite, and diverges for all z ̸= a if R = 0.

Proof. We use the root criterion for testing series convergence:

If (cn)
∞
n=0 is a sequence in R, then the series

∑∞
n=0 cn converges ab-

solutely if lim supn→∞ |cn|1/n < 1, diverges if lim supn→∞ |cn|1/n >
1.

• If R = 0, then M = ∞, in other words (supk≥n |an|1/n)n∈N is unbounded.
For z = a, we have

∑∞
n=0 an(z − a) = a0 converges, while for z ̸= a, we

have, for cn = an(z − a)n, that |cn|1/n = |an|1/n|z − a|, and therefore

sup
k≥n

|ck|1/k = |z − a| sup
k≥n

|ak|1/k

Since |z−a| > 0, this sequence (in n) grows unboundedly, i.e. lim supn→∞ |cn|1/n =
∞. Therefore,

∑∞
n=0 cn =

∑∞
n=0 an(z − a)n diverges and it follows the

series diverges for z ̸= a.
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• If R ∈ (0,∞). Then if |z − a| < R = 1/M , i.e. z ∈ D(a,R), we have (in
the second equality, we can take the |z − a| through lim sup because it is
a nonnegative real number).

lim sup
n→∞

|an(z − a)n|1/n = lim sup
n→∞

|z − a||an|1/n

= |z − a| lim sup
n→∞

|an|1/n <
lim supn→∞ |an|1/n

M

=
M

M
= 1

hence by the root criterion, applied to the sequence cn = an(z − a)n,∑∞
n=0 an(z−a)n converges absolutely for all z ∈ D(a,R). If |z−a| > R =

1/M , then we see

lim sup
n→∞

|an(z − a)n|1/n = lim sup
n→∞

|z − a||an|1/n

= |z − a| lim sup
n→∞

|an|1/n >
lim supn→∞ |an|1/n

M

=
M

M
= 1

Therefore te series
∑∞

n=0 an(z − a)n diverges by the root criterion. So we
have absolute convergence for z ∈ D(a,R) and divergence for |z − a| > R

• If R = ∞, then M = 0, hence if z ∈ C (which we could write as |z − a| <
∞), we have

lim sup
n→∞

|an(z − a)n|1/n = lim sup
n→∞

|0|1/n = 0 < 1

hence by the root criterion, applied to the sequence cn = an(z − a)n,∑∞
n=0 an(z − a)n converges absolutely for all z ∈ C.

Exercise 3.3

(a) For z ∈ D(0, 1), compute the limit

∞∑
n=1

nzn

(b) Show that for each k > 0, there exists a polynomial Pk(t) ∈ Z[t] with
integer coefficients of degree k − 1 such that

∞∑
n=0

nkzn =
Pk(z)

(1− z)k+1
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Proof. (a) We already have that
∑∞

n=0 z
n = 1

1−z holds on the disk D(0, 1),
and the latter is analytic at a = 0. Therefore, apply Theorem 3.2 to
f(z) = 1

1−z and R = 1, a = 0 and the given series, so we can conclude
that on the same disk:

∞∑
n=1

nzn =
d

dz

(
1

1− z

)
=

1

(1− z)2

(b) In (a), we showed the base case k = 1 for P1(z) = 1 is a polynomial.
Next, assume k > 1. By the induction hypothesis, we already have a
(k − 2)-degree polynomial Pk−1 with integer coefficients such that:

∞∑
n=0

nk−1zn =
Pk−1(z)

(1− z)k

and that particular the right hand side converges on the disk D(0, 1).
Theorem 3.2 gives that on D(0, 1):

∞∑
n=1

nkzn−1 =
d

dz

Pk−1(z)

(1− z)k

Note that we added the term nzn for n = 0 since it is 0. Also, we can use
convergence on the disk to take a factor z ∈ D(0, 1) through the series:

∞∑
n=0

nkzn = z
d

dz

Pk−1(z)

(1− z)k

Finally, we obtain the derivative of the right side through the quotient
rule, which is indeed valid for z ∈ D(0, 1) since (1− z)k ̸= 0 there:

z
d

dz

Pk−1(z)

(1 + z)k
= z

−k(1− z)k−1Pk−1(z)− (1− z)kP ′
k−1(z)

(1− z)2k

=
−kzPk−1(z)− z(1− z)P ′

k−1(z)

(1− z)k+1

Clearly, −kzPk−1(z) has degree k − 2 + 1 = k − 1 and integer coeffi-
cients. z(1− z)P ′

k−1(z) too, since we take a derivative, and differentiation
of a polynomial P yields a polynomial P ′ as derivative, and the coeffi-
cients stay integers as they are integer multiples of the coefficients of P ,
so differentiation is an operation Z[z] → Z[z] which decreases the degree
of the polynomial by 1. We then add 2 to the degree by multiplication
with z(1 − z) and this gives a degree k − 2 − 1 + 2 = k − 1 Z-coefficient
polynomial. We therefore get a recursion for Pk, namely

Pk(z) = −kzPk−1(z)− z(1− z)P ′
k−1(z)

The right hand side is an integer-coefficient polynomial of degree k −
1 because −kzPk−1(z) and z(1 − z)P ′

k−1(z) both are integer-coefficient
polynomials of degree k − 1
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Exercise 4.3 Compute the integral of f(z) = zn(on the domain C×) over the
unit disk for any (positive and negative) integer n.

Proof. For n ≥ 0, f(z) = zn is holomorpic on a star-shaped domain, namely C.
Since the unit circle S = {x ∈ C : |x| = 1} is a closed contour,

∮
S
f(z)dz = 0 by

Theorem 4.2. This covers the case n ≥ 0.
For n < 0, this does not hold since the function is not defined at z = 0.

We perform the explicit calculation using the parametrization γ : [0, 1] → S,
γ(t) = e2πit:

For n = −1, ∮
S

f(z)dz =

∫ 1

0

(e2πit)−1d(e2πit)

=

∫ 1

0

2πi(e2πit)−1e2πitdt

=

∫ 1

0

2πidt = 2πi

For n < −1, n+ 1 < 0 and we get a different equality:∮
S

f(z)dz =

∫ 1

0

(e2πit)nd(e2πit)

=

∫ 1

0

2πi(e2πit)ne2πitdt

=

∫ 1

0

2πie2(n+1)πitdt

=

[
2πi

2πi(n+ 1)
e2π(n+1)it

]1
0

=
2π1

2πi(n+ 1)
(1− 1) = 0

Problem 1.11(a) Determine a ∈ C such that

u = e3x cos(ay)

is harmonic.

Proof.

∆u = (∂2
xx + ∂2

yy)(e
3x cos(ay))

= cos(ay)∂2
xxe

3x + e3x∂2
yy cos(ay)

= 9e3x cos(ay)− a2e3x cos(ay)

= (9− a2)e3x cos(ay)
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And we need ∆u = 0, so this only holds if a2 = 9, so necessarily a = 3 or
a = −3. Note that these two choices give the same function u since cos(ay) =
cos(−ay).

Problem 1.11(c) Determine a, b ∈ C such that

u = ax3 + by3

is harmonic

Proof.

∆u = (∂2
xx + ∂2

yy)(ax
3 + by3)

= ∂2
xxax

3 + ∂2
yyby

3

= 6ax+ 6by

This is the zero function if and only if a = −b. There are no further restrictions
on a and b, only that a = −b and that b ∈ C.
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