Complex Analysis Homework Assignment 2

Matthijs Muis s1066918

March 4, 2024

Exercise 2.4 Let $f : \Omega \to \mathbb{C}$ be holomorphic on a connected domain $\Omega \subset \mathbb{C}$ and $\Delta = \partial_{xx}^2 + \partial_{yy}^2$ be the Laplacian. Show

$$
\Delta\left(|f(z)|^2\right) = 4|f'(z)|^2
$$

Proof. Write $f = u + iv$ where $u = u(x, y)$, $v = v(x, y)$ where $x = \Re z$, $y = \Im z$. Since f is holomorphic, it is $C^2(\Omega)$ and therefore u and v are $C^2(\Omega)$, so applying Theorem 2.3, u and v are harmonic. We have:

$$
\Delta(|f|^2) = \partial_{xx}^2 u^2 + \partial_{xx}^2 v^2 + \partial_{yy}^2 u^2 + \partial_{yy}^2 v^2
$$

\n
$$
= 2u\partial_{xx}^2 u + 2(\partial_x u)^2
$$

\n
$$
+ 2v\partial_{xx}^2 v + 2(\partial_x v)^2
$$

\n
$$
+ 2u\partial_{yy}^2 u + 2(\partial_y u)^2
$$

\n
$$
+ 2v\partial_{yy}^2 v + 2(\partial_y v)^2
$$

\n
$$
= 2u\Delta u + 2v\Delta v + 2((\partial_x u)^2 + (\partial_y u)^2 + (\partial_x v)^2 + (\partial_y v)^2)
$$

\n
$$
= 2((\partial_x u)^2 + (\partial_y u)^2 + (\partial_x v)^2 + (\partial_y v)^2)
$$

Where the final equality follows from Theorem 2.3 because u and v are harmonic, so their Laplacians vanish. Using Cauchy-Riemann's equalities: $\partial_x u = \partial_y v$ and $\partial_y u = -\partial_x v$, we have:

$$
\Delta(|f|^2) = ... = 2((\partial_x u)^2 + (\partial_y u)^2 + (\partial_x v)^2 + (\partial_y v)^2)
$$

= 2((\partial_x u)^2 + (-\partial_x v)^2 + (\partial_x v)^2 + (\partial_x u)^2)
= 2(2(\partial_x v)^2 + 2(\partial_x u)^2)
= 4((\partial_x v)^2 + (\partial_x u)^2)

While

$$
4|f'|^2 = 4|\partial_x u + i\partial_x v|^2 = 4((\partial_x u)^2 + (\partial_x v)^2)
$$

This completes the proof: $\Delta(|f(z)|^2) = 4((\partial_x v(z))^2 + (\partial_x u(z))^2) = 4|f'(z)|^2$ \Box

Exercise 2.7 For a holomorphic map $f : \Omega \to \mathbb{C}$ show that the following are equivalent:

- (i) f is constant;
- (ii) $\Re f$ and $\Im f$ are constant;
- (iii) $f'=0;$
- (iv) |f| is constant;

Proof. (i) \implies (ii): let f be constant, so there is a $z \in \mathbb{C}$ with $f(z) = c$ for all $z \in \Omega$. Then $\Re f(z) = \Re(c)$ for all $z \in \Omega$, therefore $\Re f$ is constant on Ω . Similarly $\Im f(z) = \Im(c)$ for all $z \in \Omega$, so $\Im f$ is constant on Ω . This proves (ii).

(ii) \implies (iii). f is holomorphic, so it has a complex derivative, which is (due to Theorem 2.1) given by

$$
f'(z) = \partial_x u(z) + i \partial_x v(z), \quad z \in \Omega
$$

But u and v are $\Re f$ and $\Im f$ respectively, and these are assumed to be constant and therefore have $\partial_x u = 0$ and $\partial_x v = 0$. This implies $f' = \partial_x u + i \partial_x v =$ $0 + i0 = 0$ in the domain Ω .

(iii) \implies (iv). $f' = 0$ in the domain. f can also be regarded as map $\Omega \to \mathbb{R}^2$, where $\Omega \subset \mathbb{R}^2$, in which case it is differentiable (because it is holomorphic, and holomorphicity is stronger than differentiability in $\mathbb{R}^2 \to \mathbb{R}^2$ and its jacobian at all $z \in \Omega$ is

$$
D_z f = \begin{pmatrix} c_1 & -c_2 \\ c_2 & c_1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

Since $f'(z) = c_1 + ic_2 = 0 + i0$. Now, |f| may not be holomorphic as $z \mapsto |z|$ is not. However, $z \mapsto |f(z)|^2 = u^2(z) + v^2(z)$ where $f = u + iv$, is differentiable when regarded as a function $\Omega \to \mathbb{R}$, since u and v are differentiable. By $\partial_x u = \partial_x v = \partial_y u = \partial_y v = 0$ (see the Jacobian), we have:

$$
\partial_x(|f|^2) = 2u\partial_x u + 2v\partial_x v = 0, \quad \partial_y(|f|^2) = 2u\partial_y u + 2v\partial_y v = 0
$$

Therefore, $|f|^2$ has $\partial_x(|f|^2) = 0$ and $\partial_y(|f|^2) = 0$, and we know that it is totally differentiable, so from Analysis 2 it follows that $|f|^2$ is contant on Ω . From this it immediately follows that $|f| = \sqrt{|f|^2}$ is also constant on Ω .

(iv) \implies (i): If |f| is constant on Ω then |f|² is constant on Ω , therefore if $f = u + iv$ we have $|f|^2 = u^2 + v^2$ is constant. Since f is holomorphic, u and v have partial derivatives, and in particular since $\partial_x(|f|^2) = 0$ and $\partial_y(|f|^2) = 0$ (as f is a constant function $\Omega \to \mathbb{R}$, so use analysis 2 again), we get the equalities:

$$
2u\partial_x u + 2v\partial_x v = \partial_x(|f|^2) = 0
$$

$$
2u\partial_y u + 2v\partial_y v = \partial_y(|f|^2) = 0
$$

By holomorphicity, $\partial_x u = \partial_y v$ and $\partial_y u = -\partial_x v$, and substituting this leads to

$$
2u\partial_y v + 2v\partial_x v = \partial_x(|f|^2) = 0
$$

$$
-2u\partial_y v + 2v\partial_x v = \partial_x(|f|^2) = 0
$$

Adding these equations gives $4v\partial_x v = 0$ on the domain. Since v and $\partial_x v$ are both continuous on Ω , this can only hold if $\{v = 0\} \cup \{\partial_x v = 0\} = \Omega$. Assume for a contradiction that there is an open $D \subset \Omega$ with $\partial_x v \neq 0$ on D. The openness is possible by continuity of $\partial_x v$. By $v\partial_x v = 0$, we need that $v = 0$ on D. This means v is constant on an open subset D of Ω . So $\partial_x v(z) = 0$ for an (interior) point $z \in D$ (Analysis 2, applied to a function $\Omega \to \mathbb{R}$), contradicting our assumption that $\partial_x v \neq 0$ on D. This shows $\partial_x v = 0$ everywhere. We had $\partial_x |f|^2 = 2u \partial_x u + 2v \partial_x v$, therefore $2u \partial_x u = 0$ because $\partial_x |f|^2 = 0$ and $2v\partial_x v = 0$. From $2u\partial_x u = 0$, it follows $\partial_x u = 0$ by the same argument as applied to v: assume $\partial_x u \neq 0$ somewhere, then it must be $\neq 0$ on an open set $D \subset \Omega$, therefore $u = 0$ on that open set, but then $\partial_x u(z) = 0$ for interior points $z \in D$, contradiction. Hence both $\partial_x u$ and $\partial_x v$ are 0 on Ω .

Finally $f' = \partial_x u + i \partial_x v = 0 + i0 = 0$ on Ω . This proves (ii), but we need to prove (i). (ii) \implies (i) is precisely Theorem 2.4, so we conclude (i).

Having shown (i) \implies (ii) \implies (iii) \implies (iv) \implies (i), we conclude equivalence. \Box

Exercise 3.2 Denote

$$
M = \limsup_{n \to \infty} |a_n|^{1/n} \in [0, \infty]
$$

Take $R = 1/M$ (so that $R = \infty$ when $M = 0$ and $R = 0$ when $M = \infty$). Prove that the series $\sum_{n=0}^{\infty} a_n(z-a)^n$ converges for all $z \in \mathbb{C}$ if $R = \infty$; it converges for all $z \in D(a, R)$ if $R > 0$ is finite, and diverges for all $z \neq a$ if $R = 0$.

Proof. We use the root criterion for testing series convergence:

If $(c_n)_{n=0}^{\infty}$ is a sequence in \mathbb{R} , then the series $\sum_{n=0}^{\infty} c_n$ converges absolutely if $\limsup_{n\to\infty} |c_n|^{1/n} < 1$, diverges if $\limsup_{n\to\infty} |c_n|^{1/n} >$ 1.

• If $R = 0$, then $M = \infty$, in other words $(\sup_{k \geq n} |a_n|^{1/n})_{n \in \mathbb{N}}$ is unbounded. For $z = a$, we have $\sum_{n=0}^{\infty} a_n(z-a) = a_0$ converges, while for $z \neq a$, we have, for $c_n = a_n(z-a)^n$, that $|c_n|^{1/n} = |a_n|^{1/n}|z-a|$, and therefore

$$
\sup_{k \ge n} |c_k|^{1/k} = |z - a| \sup_{k \ge n} |a_k|^{1/k}
$$

Since $|z-a| > 0$, this sequence (in n) grows unboundedly, i.e. $\limsup_{n \to \infty} |c_n|^{1/n} =$ ∞ . Therefore, $\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} a_n(z-a)^n$ diverges and it follows the series diverges for $z \neq a$.

• If $R \in (0, \infty)$. Then if $|z - a| < R = 1/M$, i.e. $z \in D(a, R)$, we have (in the second equality, we can take the $|z - a|$ through lim sup because it is a nonnegative real number).

$$
\limsup_{n \to \infty} |a_n(z - a)^n|^{1/n} = \limsup_{n \to \infty} |z - a||a_n|^{1/n}
$$

$$
= |z - a| \limsup_{n \to \infty} |a_n|^{1/n} < \frac{\limsup_{n \to \infty} |a_n|^{1/n}}{M}
$$

$$
= \frac{M}{M} = 1
$$

hence by the root criterion, applied to the sequence $c_n = a_n(z-a)^n$ hence by the root criterion, applied to the sequence $c_n = a_n(z-a)^n$,
 $\sum_{n=0}^{\infty} a_n(z-a)^n$ converges absolutely for all $z \in D(a, R)$. If $|z-a| > R =$ $1/M$, then we see

$$
\limsup_{n \to \infty} |a_n(z - a)^n|^{1/n} = \limsup_{n \to \infty} |z - a||a_n|^{1/n}
$$

$$
= |z - a| \limsup_{n \to \infty} |a_n|^{1/n} > \frac{\limsup_{n \to \infty} |a_n|^{1/n}}{M}
$$

$$
= \frac{M}{M} = 1
$$

Therefore te series $\sum_{n=0}^{\infty} a_n(z-a)^n$ diverges by the root criterion. So we have absolute convergence for $z \in D(a, R)$ and divergence for $|z - a| > R$

• If $R = \infty$, then $M = 0$, hence if $z \in \mathbb{C}$ (which we could write as $|z - a|$ ∞), we have

$$
\limsup_{n \to \infty} |a_n (z - a)^n|^{1/n} = \limsup_{n \to \infty} |0|^{1/n} = 0 < 1
$$

hence by the root criterion, applied to the sequence $c_n = a_n(z-a)^n$,
 $\sum_{n=0}^{\infty} a_n(z-a)^n$ converges absolutely for all $z \in \mathbb{C}$. $\sum_{n=0}^{\infty} a_n(z-a)^n$ converges absolutely for all $z \in \mathbb{C}$.

 \Box

Exercise 3.3

(a) For $z \in D(0,1)$, compute the limit

$$
\sum_{n=1}^{\infty} nz^n
$$

(b) Show that for each $k > 0$, there exists a polynomial $P_k(t) \in \mathbb{Z}[t]$ with integer coefficients of degree $k - 1$ such that

$$
\sum_{n=0}^\infty n^kz^n=\frac{P_k(z)}{(1-z)^{k+1}}
$$

Proof. (a) We already have that $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ holds on the disk $D(0,1)$, and the latter is analytic at $a = 0$. Therefore, apply Theorem 3.2 to $f(z) = \frac{1}{1-z}$ and $R = 1$, $a = 0$ and the given series, so we can conclude that on the same disk:

$$
\sum_{n=1}^{\infty} nz^n = \frac{d}{dz} \left(\frac{1}{1-z} \right) = \frac{1}{(1-z)^2}
$$

(b) In (a), we showed the base case $k = 1$ for $P_1(z) = 1$ is a polynomial. Next, assume $k > 1$. By the induction hypothesis, we already have a $(k-2)$ -degree polynomial P_{k-1} with integer coefficients such that:

$$
\sum_{n=0}^{\infty} n^{k-1} z^n = \frac{P_{k-1}(z)}{(1-z)^k}
$$

and that particular the right hand side converges on the disk $D(0, 1)$. Theorem 3.2 gives that on $D(0, 1)$:

$$
\sum_{n=1}^{\infty} n^k z^{n-1} = \frac{d}{dz} \frac{P_{k-1}(z)}{(1-z)^k}
$$

Note that we added the term nz^n for $n = 0$ since it is 0. Also, we can use convergence on the disk to take a factor $z \in D(0, 1)$ through the series:

$$
\sum_{n=0}^{\infty} n^k z^n = z \frac{d}{dz} \frac{P_{k-1}(z)}{(1-z)^k}
$$

Finally, we obtain the derivative of the right side through the quotient rule, which is indeed valid for $z \in D(0,1)$ since $(1-z)^k \neq 0$ there:

$$
z\frac{d}{dz}\frac{P_{k-1}(z)}{(1+z)^k} = z\frac{-k(1-z)^{k-1}P_{k-1}(z) - (1-z)^k P'_{k-1}(z)}{(1-z)^{2k}}
$$

$$
= \frac{-kzP_{k-1}(z) - z(1-z)P'_{k-1}(z)}{(1-z)^{k+1}}
$$

Clearly, $-kzP_{k-1}(z)$ has degree $k-2+1=k-1$ and integer coefficients. $z(1-z)P'_{k-1}(z)$ too, since we take a derivative, and differentiation of a polynomial P yields a polynomial P' as derivative, and the coefficients stay integers as they are integer multiples of the coefficients of P , so differentiation is an operation $\mathbb{Z}[z] \to \mathbb{Z}[z]$ which decreases the degree of the polynomial by 1. We then add 2 to the degree by multiplication with $z(1-z)$ and this gives a degree $k-2-1+2=k-1$ Z-coefficient polynomial. We therefore get a recursion for P_k , namely

$$
P_k(z) = -kzP_{k-1}(z) - z(1-z)P'_{k-1}(z)
$$

The right hand side is an integer-coefficient polynomial of degree $k -$ 1 because $-kzP_{k-1}(z)$ and $z(1-z)P'_{k-1}(z)$ both are integer-coefficient polynomials of degree $k-1$

 \Box

Exercise 4.3 Compute the integral of $f(z) = z^n$ (on the domain \mathbb{C}^\times) over the unit disk for any (positive and negative) integer n .

Proof. For $n \geq 0$, $f(z) = z^n$ is holomorpic on a star-shaped domain, namely \mathbb{C} . Since the unit circle $S = \{x \in \mathbb{C} : |x| = 1\}$ is a closed contour, $\oint_S f(z)dz = 0$ by Theorem 4.2. This covers the case $n \geq 0$.

For $n < 0$, this does not hold since the function is not defined at $z = 0$. We perform the explicit calculation using the parametrization $\gamma : [0,1] \rightarrow S$, $\gamma(t) = e^{2\pi i t}$:

For $n = -1$,

$$
\oint_{S} f(z)dz = \int_{0}^{1} (e^{2\pi i t})^{-1} d(e^{2\pi i t})
$$
\n
$$
= \int_{0}^{1} 2\pi i (e^{2\pi i t})^{-1} e^{2\pi i t} dt
$$
\n
$$
= \int_{0}^{1} 2\pi i dt = 2\pi i
$$

For $n < -1$, $n + 1 < 0$ and we get a different equality:

$$
\oint_{S} f(z)dz = \int_{0}^{1} (e^{2\pi it})^{n} d(e^{2\pi it})
$$
\n
$$
= \int_{0}^{1} 2\pi i (e^{2\pi it})^{n} e^{2\pi it} dt
$$
\n
$$
= \int_{0}^{1} 2\pi i e^{2(n+1)\pi it} dt
$$
\n
$$
= \left[\frac{2\pi i}{2\pi i (n+1)} e^{2\pi (n+1)it} \right]_{0}^{1}
$$
\n
$$
= \frac{2\pi 1}{2\pi i (n+1)} (1-1) = 0
$$

 \Box

Problem 1.11(a) Determine $a \in \mathbb{C}$ such that $u = e^{3x} \cos(ay)$

is harmonic.

Proof.

$$
\Delta u = (\partial_{xx}^2 + \partial_{yy}^2)(e^{3x}\cos(ay))
$$

= $\cos(ay)\partial_{xx}^2 e^{3x} + e^{3x}\partial_{yy}^2 \cos(ay)$
= $9e^{3x}\cos(ay) - a^2e^{3x}\cos(ay)$
= $(9 - a^2)e^{3x}\cos(ay)$

And we need $\Delta u = 0$, so this only holds if $a^2 = 9$, so necessarily $a = 3$ or $a = -3$. Note that these two choices give the same function u since $cos(ay) =$ $cos(-ay)$. \Box

Problem 1.11(c) Determine $a, b \in \mathbb{C}$ such that

$$
u = ax^3 + by^3
$$

is harmonic

Proof.

$$
\Delta u = (\partial_{xx}^2 + \partial_{yy}^2)(ax^3 + by^3)
$$

= $\partial_{xx}^2 ax^3 + \partial_{yy}^2 by^3$
= $6ax + 6by$

This is the zero function if and only if $a = -b$. There are no further restrictions on a and b, only that $a = -b$ and that $b \in \mathbb{C}$. \Box