
Complex Analysis Homework 1

Matthijs Muis
s1066918

March 4, 2024

Exercise 1.1 Given a polynomial p(z) with real coefficients, show that if z0
is its zero then so is its conjugate z0. (In other words, complex roots always
appear in conjugate pairs.) Conclude from this that a polynomial p(z) ∈ R[z]
of odd degree always has a real root.

Proof. Let p(z) = a0 + a1z + ... + anz
n where a1, ..., an ∈ R. We are given

p(z0) = 0, so
a0 + a1z0 + ...+ anz

n
0 = 0

We can conjugate both sides:

a0 + a1z0 + ...+ anzn0 = 0 = 0

By the homomorphism property of conjugation, i.e. ab+ c = ab + c, and the
fact that ai = ai since every ai is real, we get also that an = an for any n ∈ N.
Using these identities, we can rewrite the above equation to:

a0 + a1z0 + ...+ anzn0 = 0

a0 + a1 z0 + ...+ an z0
n = 0

a0 + a1z0 + ...+ anz0
n = 0

But the last one is just the equation p(z0) = 0, so indeed z0 is also a zero of
p.

Exercise 1.2 Show that for all z ∈ C,

lim
n→∞

(
1 +

z

n

)n

= ez

Proof. We use the binomial theorem:(
1 +

z

n

)n

=

n∑
k=0

1

nk

(
n

k

)
zk

k!

=

n∑
k=0

(n)k
nk

zk

k!

1



Here, (n)k is the ”dalende faculteit” or Pochammer symbol (n)k := n!
(n−k)! . So

(n)k is a polynomial of degree k in n, with the leading coefficient equal to 1.

This implies that (n)k
nk → 1 as n → ∞, for fixed k. The problem is that k is not

fixed. However, we can solve this by noting that at least (n)k
nk is bounded by 1,

and
∑∞

k=0
zk

k! has the Cauchy criterion.
To be precise, pick for ϵ > 0, a N ∈ N such that for all m > N we have

m∑
k=N

zk

k!
< ϵ/2

Then we see, as 0 < (N)k/N
k ≤ 1 for all k,m ∈ N, that for all m > N :

m∑
k=N

(m)k
mk

zk

k!
< ϵ/2

Next, we pick an M ≥ N with: for all fixed k ≤ N and all m ≥ M ,∣∣∣∣ (m)k
mk

zk

k!
− zk

k!

∣∣∣∣ < ϵ/2N

This means: picking an M ≥ N with for all m ≥ M∣∣∣∣ (m)k
mk

− 1

∣∣∣∣ < ϵk!

2N |z|k
, ∀k = 0, ..., N

which can be done indeed since (n)k
n! → 1 as n → ∞, and we do this for only

finitely many, namely N , k’s, so we can pick the maximum Mk for which this
holds. Then, we get the following approximation for any n > M :

n∑
k=0

(n)k
nk

zk

k!
=

N−1∑
k=0

(n)k
nk

zk

k!
+

n∑
k=N

(n)k
nk

zk

k!

Therefore,∣∣∣∣∣
n∑

k=0

(n)k
nk

zk

k!
− exp(z)

∣∣∣∣∣ =
∣∣∣∣∣
N−1∑
k=0

(n)k
nk

zk

k!
+

n∑
k=N

(n)k
nk

zk

k!
−

∞∑
k=0

zk

k!

∣∣∣∣∣
≤

N−1∑
k=0

∣∣∣∣ (n)knk

zk

k!
− zk

k!

∣∣∣∣+
∣∣∣∣∣

n∑
k=N

(n)k
nk

zk

k!

∣∣∣∣∣+
∣∣∣∣∣

∞∑
k=N

zk

k!

∣∣∣∣∣
≤ ϵ/2 +

∣∣∣∣∣
n∑

k=N

(n)k
nk

zk

k!

∣∣∣∣∣+
∣∣∣∣∣

∞∑
k=N

zk

k!

∣∣∣∣∣
< ϵ/2 + ϵ/2 + ϵ/2 =

3

2
ϵ

And this is sufficient (we should have picked a bit smaller ϵ, but we can do this
for 2

3ϵ and conclude we can do it for any ϵ > 0).
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Exercise 1.4 Prove that the (multi-valued!) argument arg z satisfies

arg(zw) = arg z + argw ( mod 2πZ)

Proof. Write z = |z|ei arg z and w = |w|ei argw. Since scaling by a positive real
number doesn’t change the argument of a complex number,

arg(zw) = arg(|z||w|ei arg zei argw) = arg(ei arg zei argw)

Next use the property exp(a+ b) = exp(a) exp(b) for a, b ∈ C, to get

arg(ei arg zei argw) = arg(ei arg z+i argw)

= arg(ei(arg z+argw))

Finally, using arg(eiθ) = θ mod 2π for θ ∈ R:

= arg z + argw + n · 2π, n ∈ Z

Any multiple of 2π can be used, as arg is defined modulo 2π and this gives the
required equality:

arg(zw) = arg z + argw( mod 2π)

Exercise 1.6 Show that the functions sin is entire and compute its derivatives.

Proof. We use the fact that linear combinations of functions holomorphic at
x ∈ C are holomorphic at x, since if

lim
y→x

f(y)− f(x)

|y − x|
and lim

y→x

g(y)− g(x)

|y − x|

both exist, then using the sum rule for limits, we derive

lim
y→x

[f(y) + λg(y)]− [f(x) + λg(x)]

|y − x|
= lim

y→x

f(y)− f(x)

|y − x|
+ lim

y→x

g(y)− g(x)

|y − x|

exists and is the sum of the complex derivatives. And if f g are entire, this means
that they are holomorphic at every z ∈ C and therefore f + λg is holomorphic
at every z ∈ C, making f + λg entire.

Next, we note that exp is entire and that

sin(z) =
1

2i
exp(iz)− 1

2i
exp(−iz)

Therefore, sin is entire as a linear combination of exps (note that if exp(iz) is
entire as it is the composition of entire complex multiplication with i and exp).
Moreover, its derivative is the sum of the derivatives of exp:

d

dz
sin(z) =

1

2i

d

dz
exp(iz)− 1

2i

d

dz
exp(−iz)
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Now, using the chain rule, the individual terms are entire and their derivatives
w.r.t. z are:

1

2i

d

dz
exp(iz)− 1

2i

d

dz
exp(−iz) =

(i)

2i
exp(iz)− (−i)

2i
exp(−iz)

=
1

2
exp(iz) +

1

2
exp(−iz)

= cos(z)

Therefore, the derivative of sin at z ∈ C equals cos(z). The identities for cos
and sin follow from Euler’s identity:

exp(iθ) = cos(θ) + i sin(θ) =⇒ exp(iθ) = cos(θ)− i sin(θ)

From which we indeed get cos(z) = eiz+eiz

2 and sin(z) = eiz−e−iz

2i

Problem 1.2(d) Solve and graph z4 + 16 = 0.

Proof.

z4 + 16 = (z2)2 + 42

= (z2)2 − (4i)2

[merkwaardig product]

= (z2 + 4i)(z2 − 4i)

Next, x2 = i has two solutions, namely

i = e
π
2 i

and using this we get that both α1 = e
π
4 i = 1√

2
+ 1√

2
i and α2 = −e

π
4 i =

− 1√
2
− 1√

2
i have α2

j = i, for j = 1, 2. From this, we derive that iα1 and iα2

have (iαj)
2 = −i, j = 1, 2. Finding roots of z2 ± 4i = 0 is now straightforward

as we can just scale with a factor
√
4 = 2:

z2 − 4i = 0 has roots z = ±2(
1√
2
+

1√
2
i) = ±(

√
2 + i

√
2)

z2 + 4i = 0 has roots z = ±2i(
1√
2
+

1√
2
i) = ∓(

√
2− i

√
2)

This gives 4 solutions:

√
2 + i

√
2, −

√
2− i

√
2,

√
2− i

√
2, −

√
2 + i

√
2
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Giving a factorization:

z4 + 16 = (z − (
√
2 + i

√
2))(z − (−

√
2− i

√
2))(z − (

√
2− i

√
2))(z − (−

√
2 + i

√
2))

= (z −
√
2− i

√
2)(z +

√
2 + i

√
2)(z −

√
2 + i

√
2)(z +

√
2− i

√
2)

= (z −
√
2− i

√
2)(z −

√
2 + i

√
2)(z +

√
2 + i

√
2)(z +

√
2 + i

√
2)

[merkwaardig product]

= ((z −
√
2)2 + 2)((z +

√
2)2 + 2)

= (z2 − 2
√
2z + 4)(z2 + 2

√
2z + 4)

Problem 1.4(e)
ℑ(z2) = 2

This holds for z = a + bi (a, b ∈ R) iff. ℑ((a + bi)(a + bi)) = 2ab = 2, iff.
ab = 1. For (a, b) ∈ R2, this is an hyperbola with tips (1, 1) and (−1,−1) and
asymptotes the x-axis and y-axis, which are the real and the imaginary axis in
C:
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Problem 1.4(h)

| arg(z)| ≤ π

4

This holds for z ∈ C if and only if −π
4 ≤ arg z ≤ π

4 , which holds precisely for all
imaginary numbers z that have |ℑ(z)| ≤ ℜ(z): these form a cone in the complex
plane as follows:
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