Complex Analysis Homework 1

Matthijs Muis s1066918

March 4, 2024

Exercise 1.1 Given a polynomial $p(z)$ with real coefficients, show that if z_0 is its zero then so is its conjugate $\overline{z_0}$. (In other words, complex roots always appear in conjugate pairs.) Conclude from this that a polynomial $p(z) \in \mathbb{R}[z]$ of odd degree always has a real root.

Proof. Let $p(z) = a_0 + a_1 z + ... + a_n z^n$ where $a_1, ..., a_n \in \mathbb{R}$. We are given $p(z_0) = 0$, so

$$
a_0 + a_1 z_0 + \dots + a_n z_0^n = 0
$$

We can conjugate both sides:

$$
\overline{a_0 + a_1 z_0 + \dots + a_n z_0^n} = \overline{0} = 0
$$

By the homomorphism property of conjugation, i.e. $\overline{ab+c} = \overline{ab} + \overline{c}$, and the fact that $\overline{a_i} = a_i$ since every a_i is real, we get also that $\overline{a^n} = \overline{a}^n$ for any $n \in \mathbb{N}$. Using these identities, we can rewrite the above equation to:

$$
\overline{a_0} + \overline{a_1 z_0} + \dots + \overline{a_n z_0^n} = 0
$$

$$
\overline{a_0} + \overline{a_1} \overline{z_0} + \dots + \overline{a_n} \overline{z_0}^n = 0
$$

$$
a_0 + a_1 \overline{z_0} + \dots + a_n \overline{z_0}^n = 0
$$

But the last one is just the equation $p(\overline{z_0}) = 0$, so indeed $\overline{z_0}$ is also a zero of p . \Box

Exercise 1.2 Show that for all $z \in \mathbb{C}$,

$$
\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^z
$$

Proof. We use the binomial theorem:

$$
\left(1 + \frac{z}{n}\right)^n = \sum_{k=0}^n \frac{1}{n^k} {n \choose k} \frac{z^k}{k!}
$$

$$
= \sum_{k=0}^n \frac{(n)_k}{n^k} \frac{z^k}{k!}
$$

Here, $(n)_k$ is the "dalende faculteit" or Pochammer symbol $(n)_k := \frac{n!}{(n-k)!}$. So $(n)_k$ is a polynomial of degree k in n, with the leading coefficient equal to 1. This implies that $\frac{(n)_k}{n^k} \to 1$ as $n \to \infty$, for fixed k. The problem is that k is not fixed. However, we can solve this by noting that at least $\frac{(n)_k}{n^k}$ is bounded by 1, and $\sum_{k=0}^{\infty} \frac{z^k}{k!}$ $\frac{z^n}{k!}$ has the Cauchy criterion.

To be precise, pick for $\epsilon > 0$, a $N \in \mathbb{N}$ such that for all $m > N$ we have

$$
\sum_{k=N}^m \frac{z^k}{k!} < \epsilon/2
$$

Then we see, as $0 < (N)_k/N^k \leq 1$ for all $k, m \in \mathbb{N}$, that for all $m > N$:

$$
\sum_{k=N}^m \frac{(m)_k}{m^k} \frac{z^k}{k!} < \epsilon/2
$$

Next, we pick an $M \geq N$ with: for all fixed $k \leq N$ and all $m \geq M$,

$$
\left| \frac{(m)_k}{m^k} \frac{z^k}{k!} - \frac{z^k}{k!} \right| < \epsilon/2N
$$

This means: picking an $M \geq N$ with for all $m \geq M$

$$
\left|\frac{(m)_k}{m^k} - 1\right| < \frac{\epsilon k!}{2N|z|^k}, \ \forall k = 0, \dots, N
$$

which can be done indeed since $\frac{(n)_k}{n!} \to 1$ as $n \to \infty$, and we do this for only finitely many, namely N, k 's, so we can pick the maximum M_k for which this holds. Then, we get the following approximation for any $n > M$:

$$
\sum_{k=0}^{n} \frac{(n)_k}{n^k} \frac{z^k}{k!} = \sum_{k=0}^{N-1} \frac{(n)_k}{n^k} \frac{z^k}{k!} + \sum_{k=N}^{n} \frac{(n)_k}{n^k} \frac{z^k}{k!}
$$

Therefore,

$$
\left| \sum_{k=0}^{n} \frac{(n)_k}{n^k} \frac{z^k}{k!} - \exp(z) \right| = \left| \sum_{k=0}^{N-1} \frac{(n)_k}{n^k} \frac{z^k}{k!} + \sum_{k=N}^{n} \frac{(n)_k}{n^k} \frac{z^k}{k!} - \sum_{k=0}^{\infty} \frac{z^k}{k!} \right|
$$

$$
\leq \sum_{k=0}^{N-1} \left| \frac{(n)_k}{n^k} \frac{z^k}{k!} - \frac{z^k}{k!} \right| + \left| \sum_{k=N}^{n} \frac{(n)_k}{n^k} \frac{z^k}{k!} \right| + \left| \sum_{k=N}^{\infty} \frac{z^k}{k!} \right|
$$

$$
\leq \epsilon/2 + \left| \sum_{k=N}^{n} \frac{(n)_k}{n^k} \frac{z^k}{k!} \right| + \left| \sum_{k=N}^{\infty} \frac{z^k}{k!} \right|
$$

$$
< \epsilon/2 + \epsilon/2 + \epsilon/2 = \frac{3}{2} \epsilon
$$

And this is sufficient (we should have picked a bit smaller ϵ , but we can do this for $\frac{2}{3}\epsilon$ and conclude we can do it for any $\epsilon > 0$).

 \Box

Exercise 1.4 Prove that the (multi-valued!) argument arg z satisfies

$$
arg(zw) = arg z + arg w \ (\mod 2\pi \mathbb{Z})
$$

Proof. Write $z = |z|e^{i \arg z}$ and $w = |w|e^{i \arg w}$. Since scaling by a positive real number doesn't change the argument of a complex number,

$$
arg(zw) = arg(|z||w|e^{i arg z}e^{i arg w}) = arg(e^{i arg z}e^{i arg w})
$$

Next use the property $\exp(a+b) = \exp(a)\exp(b)$ for $a, b \in \mathbb{C}$, to get

$$
arg(e^{i arg z}e^{i arg w}) = arg(e^{i arg z + i arg w})
$$

=
$$
arg(e^{i (arg z + arg w)})
$$

Finally, using $\arg(e^{i\theta}) = \theta \mod 2\pi$ for $\theta \in \mathbb{R}$:

$$
= \arg z + \arg w + n \cdot 2\pi, \ n \in \mathbb{Z}
$$

Any multiple of 2π can be used, as arg is defined modulo 2π and this gives the required equality:

$$
arg(zw) = arg z + arg w \quad mod \ 2\pi)
$$

 \Box

Exercise 1.6 Show that the functions sin is entire and compute its derivatives.

Proof. We use the fact that linear combinations of functions holomorphic at $x \in C$ are holomorphic at x, since if

$$
\lim_{y \to x} \frac{f(y) - f(x)}{|y - x|}
$$
 and
$$
\lim_{y \to x} \frac{g(y) - g(x)}{|y - x|}
$$

both exist, then using the sum rule for limits, we derive

$$
\lim_{y \to x} \frac{[f(y) + \lambda g(y)] - [f(x) + \lambda g(x)]}{|y - x|} = \lim_{y \to x} \frac{f(y) - f(x)}{|y - x|} + \lim_{y \to x} \frac{g(y) - g(x)}{|y - x|}
$$

exists and is the sum of the complex derivatives. And if $f\ g$ are entire, this means that they are holomorphic at every $z \in \mathbb{C}$ and therefore $f + \lambda g$ is holomorphic at every $z \in \mathbb{C}$, making $f + \lambda g$ entire.

Next, we note that exp is entire and that

$$
\sin(z) = \frac{1}{2i} \exp(iz) - \frac{1}{2i} \exp(-iz)
$$

Therefore, sin is entire as a linear combination of exps (note that if $\exp(iz)$ is entire as it is the composition of entire complex multiplication with i and exp). Moreover, its derivative is the sum of the derivatives of exp:

$$
\frac{d}{dz}\sin(z) = \frac{1}{2i}\frac{d}{dz}\exp(iz) - \frac{1}{2i}\frac{d}{dz}\exp(-iz)
$$

Now, using the chain rule, the individual terms are entire and their derivatives w.r.t. z are:

$$
\frac{1}{2i}\frac{d}{dz}\exp(iz) - \frac{1}{2i}\frac{d}{dz}\exp(-iz) = \frac{(i)}{2i}\exp(iz) - \frac{(-i)}{2i}\exp(-iz)
$$

$$
= \frac{1}{2}\exp(iz) + \frac{1}{2}\exp(-iz)
$$

$$
= \cos(z)
$$

Therefore, the derivative of sin at $z \in \mathbb{C}$ equals $\cos(z)$. The identities for cos and sin follow from Euler's identity:

$$
\exp(i\theta) = \cos(\theta) + i\sin(\theta) \implies \exp(i\theta) = \cos(\theta) - i\sin(\theta)
$$

 \Box

From which we indeed get $cos(z) = \frac{e^{iz} + e^{iz}}{2}$ $\frac{+e^{iz}}{2}$ and $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$ $2i$

Problem 1.2(d) Solve and graph $z^4 + 16 = 0$.

Proof.

$$
z4 + 16 = (z2)2 + 42
$$

= (z²)² – (4*i*)²
[merkwaardig product]
= (z² + 4*i*)(z² – 4*i*)

Next, $x^2 = i$ has two solutions, namely

$$
i=e^{\frac{\pi}{2}i}
$$

and using this we get that both $\alpha_1 = e^{\frac{\pi}{4}i} = \frac{1}{\sqrt{2}}$ $\frac{1}{2} + \frac{1}{\sqrt{2}}$ $\overline{z}i$ and $\alpha_2 = -e^{\frac{\pi}{4}i}$ = $-\frac{1}{4}$ $\frac{1}{2} - \frac{1}{\sqrt{2}}$ \overline{z}^i have $\alpha_j^2 = i$, for $j = 1, 2$. From this, we derive that $i\alpha_1$ and $i\alpha_2$ have $(i\alpha_j)^2 = -i$, $j = 1, 2$. Finding roots of $z^2 \pm 4i = 0$ is now straightforward as we can just scale with a factor $\sqrt{4} = 2$:

$$
z^2 - 4i = 0
$$
 has roots $z = \pm 2(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i) = \pm(\sqrt{2} + i\sqrt{2})$

$$
z^2 + 4i = 0
$$
 has roots $z = \pm 2i(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i) = \mp(\sqrt{2} - i\sqrt{2})$

This gives 4 solutions:

$$
\sqrt{2} + i\sqrt{2}, \quad -\sqrt{2} - i\sqrt{2}, \quad \sqrt{2} - i\sqrt{2}, \quad -\sqrt{2} + i\sqrt{2}
$$

Giving a factorization:

$$
z^4 + 16 = (z - (\sqrt{2} + i\sqrt{2}))(z - (-\sqrt{2} - i\sqrt{2}))(z - (\sqrt{2} - i\sqrt{2}))(z - (-\sqrt{2} + i\sqrt{2}))
$$

\n
$$
= (z - \sqrt{2} - i\sqrt{2})(z + \sqrt{2} + i\sqrt{2})(z - \sqrt{2} + i\sqrt{2})(z + \sqrt{2} - i\sqrt{2})
$$

\n
$$
= (z - \sqrt{2} - i\sqrt{2})(z - \sqrt{2} + i\sqrt{2})(z + \sqrt{2} + i\sqrt{2})(z + \sqrt{2} + i\sqrt{2})
$$

\n[merkwaardig product]
\n
$$
= ((z - \sqrt{2})^2 + 2)((z + \sqrt{2})^2 + 2)
$$

\n
$$
= (z^2 - 2\sqrt{2}z + 4)(z^2 + 2\sqrt{2}z + 4)
$$

 \Box

Problem 1.4(e)

$$
\Im(z^2) = 2
$$

This holds for $z = a + bi$ $(a, b \in \mathbb{R})$ iff. $\Im((a + bi)(a + bi)) = 2ab = 2$, iff. $ab = 1$. For $(a, b) \in \mathbb{R}^2$, this is an hyperbola with tips $(1, 1)$ and $(-1, -1)$ and asymptotes the x -axis and y -axis, which are the real and the imaginary axis in \mathbb{C}

Problem 1.4(h)

$$
|\arg(z)| \le \frac{\pi}{4}
$$

This holds for $z \in \mathbb{C}$ if and only if $-\frac{\pi}{4} \leq \arg z \leq \frac{\pi}{4}$, which holds precisely for all imaginary numbers z that have $|\Im(z)| \leq \Re(z)$: these form a cone in the complex plane as follows:

