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4 Contour Integrals and Cauchy Theorem

Definition 4.1. contour
A contour or path is a continuous mapping γ : [a, b] → C from a compact

interval [a, b] ⊂ R, such that γ is piecewise C1, that is there are a = t0 < ... <
tn = b with γ ∈ C1([tk−1, tk])

This enables us to define the contour integral:

Definition 4.2. contour integral
The contour integral of a function f : C ⊃ Ω → C that is continuous on

Ω along a contour γ : [a, b] → Ω is∫
γ

f(z)dz =

n∑
k=1

∫ tk

tk−1

f(γ(t))γ′(t)dt

It is important to note that the parametrization does not matter so much:
the only things that will affect the value of the integral are the orientation of γ
and the image set γ([a, b]).

Lemma 4.3. Verify that if γ and µ are two C1 parametrizations γ : [a, b] → Ω,
µ : [c, d] → Ω with γ(a) = µ(c), γ(b) = µ(d) and γ([a, b]) = µ([c, d]), then∫

γ

f(z)dz =

∫
µ

f(z)dz

Proof. Using the fact that γ is C1([a, b]), we can conclude it is a diffeomorphism
everywhere where it has a nonzero derivative. Since γ′(t) = 0 on a connected
subinterval [p, q] of [a, b] means that γ is constant on that subinterval, and
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γ(q) = γ(p) therefore, we can write∫
γ

f(z)dz =

∫ p

z

f(γ(t))γ′(t)dt

+

∫ q

p

f(γ(t))γ′(t)dt

+

∫ d

q

f(γ(t))γ′(t)dt

=

∫ p

z

f(γ(t))γ′(t)dt+

∫ d

q

f(γ(t))γ′(t)dt

We can cut away [p, q] and conclude that we can always reduce γ and µ such
that they have nonzero derivative on a non-open subset of [a, b]. Splitting this
up into separate arguments for each interval where γ′ ̸= 0 and µ′ ̸= 0, we can
assume wlog that γ′ ̸= 0 and µ′ ̸= 0 on [a, b], [c, d] respectively. So they are
diffeomorphisms, and µ−1 : γ([a, b]) → [c, d] is a diffeomorphism too. This gives
a diffeomorphism s = µ−1 ◦ γ : [a, b] → [c, d]. We conclude that we can apply
the substitution rule s = s(t) with this diffeomorphism: namely µ(s(t)) = γ(t)
so γ′(t) = µ′(s(t))s′(t)∫

γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt

=

∫ b

a

f(µ(s(t)))µ′(s(t))s′(t)dt

=

∫ d

c

f(µ(s))µ′(s)ds

=

∫
µ

f(z)dz

Lemma 4.4. fundamental inequality
Let f : C ⊃ Ω → C be continuous and γ : [a, b] → Ω a contour. Let

M = sup
γ

|f(z)| = max t ∈ [a, b]f(γ(t))

This is indeed a maximum: f ◦ γ is a continuous function and [a, b] is compact.
Then we have ∣∣∣∣∫

γ

f(z)dz

∣∣∣∣ ≤ l(γ)M

Where the length l(γ) :=
∫ b

a
γ′(t)dt
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Proof. Consider the two continuous functions:

u 7→ F (u) =

∫ u

a

f(γ(t))γ′(t)dt

u 7→ G(u) =

∫ u

a

γ′(t)dt

These are continuous and differentiable by the fundamental theorem of calculus
applied to the real and imaginary components separately. The generalized mean
value theorem gives that there is a c ∈ [a, b] such that

G′(c)(F (b)− F (a)) = F ′(c)(G(b)−G(a))

Clearly, this reads:

γ′(c)

∫ b

a

f(γ(t))γ′(t)dt = f(γ(c))γ′(c)

∫ b

a

γ′(t)dt

Giving, if we assume w.l.o.g. that γ′ ̸= 0 on [a, b]:∫ b

a

f(γ(t))γ′(t)dt = f(γ(c))l(γ)

This mean value result gives us a simple upper bound by taking the supremum
over c and the modulus on both sides.

Definition 4.5. For γ : [a, b] → C a contour, define −γ : [−b,−a] → C through
(−γ)(t) = γ(−t). This gives∫

−γ

f(z)dz = −
∫
γ

f(z)dz

Note that, like with vector fields on vector spaces of higher dimension than
1, it is not directly the case that a primitive of f on C exists:

f(z) =
1

z
=⇒

∫
|z|=1

f(z)dz =

∫ 1

0

d(e2πit)

e2πit
=

∫ 1

0

2πie2πite−2πitdt = 2πi

The results about the existence of primitives are very similar to the results
described by the Poincaré lemma. The version of Poincarés lemma that I
have seen this far says

Lemma 4.6. If ω ∈
∧
(Ω) for Ω an open and simply connected domain in RN ,

then there is a F ∈ C1(Ω), that is F : with dF = ω, that is

N∑
i=1

(∂iF )dxi =

N∑
i=1

ωidxi ⇐⇒ ∀i = 1, ..., N : ∂iF = ωi
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if and only if ω is closed, and the domain is simply connected (every continuous
closed curve can be contracted to a single point). A closed 1-form has ∀i =
1, ..., N : ωi ∈ C1(Ω) and

∀i, j ∈ {1, ..., N} : ∂iωj = ∂jωi

But in our situation, we are not looking for a primitive F : C → R but a
primitive F : C → C.

Remark 4.7. Write f(z) = f(x + uy) = u(x, y) + iv(x, y), then with dz =
dx+ idy, f(z)dz = (udx− vdy) + i(udy+ vdx), and fdz has exterior derivative

d(fdz) = [(−∂yu+ ∂xv) + i(∂xu− ∂yv)]dx ∧ dy

Therefore, fdz has a primitive if and only if Ω is open and the Cauchy-Riemann
equations are satisfied.

However, the notes take the touristic approach via the theorem of Cauchy-
Goursat. I will just state that theorem here because the proof is very visual and
you should be on Wikipedia rather than reading these notes anyway.

Lemma 4.8. Cauchy-Goursat
Let f : Ω → C be a holomorphic function on a connected domain Ω ⊂ C.

Take a closed triangle T ⊂ Ω and consider its boundary γ = ∂T as a contour in
Ω traversed in positive direction. Then∫

γ

f(z)dz = 0

Definition 4.9. We call a set Ω ⊂ V where V is a vector space, star shaped if
there is a a ∈ Ω with for all v ∈ V , if v ∈ Ω then also the ray a+[0, 1](v−a) ⊂ Ω

The following theorem is then slowly obtained from these preliminaries:

Theorem 4.10. Suppose that f : C ⊃ Ω → C is holomorphic on a star-shaped
domain Ω with centre a. Then

F (z) =

∫
[a,z]

f(t)dt

is a holomorphic primitive of f . Here, [a, z] = {a+ (z − a)t : t ∈ [0, 1]}.

Note that it immediately extends to a simply connected domain, if the seg-
ment [a, z] = {a+ (z − a)t : t ∈ [0, 1]} is contained in the domain. Simply pick
a star-shaped set around the segment.

Theorem 4.11. Caucy integral theorem
Let f : Ω → C be a holomorphic function on a star-shaped domain Ω ⊂ C.

Then ∮
γ

f(z)dz = 0

For any closed contour γ in Ω.
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