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3 Power Series and Analytic Functions

Definition 3.1. analytic functions
f:C > Q — C is analytic at ¢ € Q if there is a sequence (an), and a
R > 0 such that on the disk D(c, R), the following series converges to f(z):

Y an (2= = f(z)
k=0

If this equation is valid at all c € ), we say f is analytic on

Analytic functions on a metric space ) are always smooth (i.e. C*()).
The converse need not to hold: Consider 2 = R and

fa) = {0_ <0

e x>0

8-

We see

n 0 <0
f( )(x): 4 1
pn(y)e Y y:;) x>0

p()

Where for each n € N, p,(y) € R[y]. Since we know lim,_, = (0 for any
R-polynomial, it follows that f(") exists and is continuous on Q. Yet f has all
its derivatives equal to zero at x = 0, so its power series representation at 0 is
> ken 0, which clearly does not converge to f(z) for z > 0. So f is not analytic
at 0. Indeed, if Q is a metric space, then any f : Q@ — R that is 0 on an open
subset of 2 must have power series representation 0 there, and it follows that

any analytic function on () that is zero on an open subset, is the zero function.

Lemma 3.2. On D(0,1), the series Y, 2" converges absolutely to 1



Proof. Partial sums:
S L2
T1-z

If |2| < 1 then |2|V*! — 0 (Analysis 1), therefore 2 — 0 too. So we can take
the limit z — oo above to conclude absolute convergence. Since C is complete,
this implies convergence on the disk. O

Lemma 3.3. Abel’s lemma

If a power series Y po_y arpz® converges at zy € C, then it converges absolutely
in all z € D(0, 29)
Proof. For Y 12, ayz® converges, it follows axzf — 0 as k — 0. This means

that |ag||z|* is bounded in R, say by C. For any z € D(0, z), we have

0o 00 0 k C
>t =3 ot < S0l < €
k=0 k=0 | ‘ZO|

k=0 " Teol

The series Y - |axz"| being bounded implies its absolute converges by its
monotonicity. O

k

Theorem 3.4. If the power series Y o arx(z—a)¥ converges in a disk D(a, R),

then it converges absolutely and uniformly on any closed disk D(a,r) withr < R

Proof. We can w.l.o.g. assume a = 0, else we can consider the power series
as a function of the variable z — a. Then, apply Abel’s lemma to conclude
for any r < R that there is absolute convergence for all |z —a| < r + € < R,
implying absolute convergence of the series on the disk |z —a| < r. This implies
that with M, = a,r", the series Y M, converges. By a,(z —a)” < M,
on this compact disk, we can use the M-test of Weierstral to conclude that
> heo ak(z — a) converges uniformly on the disk. It also converges absolutely
by the same argument applied to |ax(a — 2)| € [a — 7, a + 7]. O

Theorem 3.5. Assume that a function f : Q — C is analytic at a € Q and
represented by the power series

Z an(z—a)"
n=0

in the disk D(a, R). Then

o0

fl(z)= Z an(z —a)"

n=0
and this series converges in the same disk.

In the proof we appeal to the root test:



Lemma 3.6. Y7 by , let C =limsup,_, W: which may be +o00.
o IfC <1 then > ;o br converges absolutely.
o IfC >1 then > ;- by diverges.
As a consequence for a power series Y p- o ax(z—a)*, it converges for |z—a| < &.

Proof. W.lo.g. a = 0. Since limsup,,_,., {/n = 1, the series Y.~ ja,z" and
f'(z) = Y07 g anz™"! both have radius of convergence

1

limsupy._, o, 4/Jax]

So indeed Y 7 ja,z""! converges on the same disk.
Next, pick any ) < r < R and |z| < r. Then pick an N such that

E na,z" < €

n>N

R

The remainder uses the triangle inequality: By openness of the disk D(0,r)
around z, in particular for h € D(0, |z| — 1) we have w = z + h € D(0,r), we
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We now use continuity of the polynomial w + Zﬁfzo an, ZZ;S wkzn=17F at 2
to conclude that there is a § > 0 with for all w € D(z, min{|z| — r,§}),

N n—1
| g an g whz" IR Tl ) <€
n=0 k=0

From which it follows

w—z

HOEFCNE I
n=1

For w in a §(€)-disk around z, and we conclude. O



Exercise 3.7. (a) For z € D(0,1), compute the limit
S
n=1

(b) Show that for each k > 0, there exists a polynomial Py(t) € Z[t] with
integer coefficients of degree k — 1 such that

Z” 1_5;1“

Proof. (a) We already have that Y " 2" = = holds on the disk D(0,1).
Therefore, we can conclude that on the same disk:

i (1iz)<1—1z>2

(b) We showed the base case k = 1. Next, assume k > 1 and that we already
have a k — 2-degree polynomial Pi_1 with integer coefficients such that:

P —1

and that particular the rlght hand side converges on the disk D(0,1). The
lemma gives that

n—1 _ de 1()
Z”k dz (1 + 2)F

Note that we can add the term n = 0 since it is 0. Also, we can use
convergence on the disk to take a factor z € D(0, 1) through the series:

Z” _d P

“dz (14 2)k
Finally, we obtain the derivative of the right side through the quotient
rule:
LA Pa(s) k-2 R(e) - (1= 2R, ()
dz (1+ 2)k (1—2)2%k
—kzPy_1(2) — 2(1 — 2) P, _,(#)
- (1= z)FH1

Clearly, —kzPy_1(2) has degree k —2+ 1 = k — 1 and integer coeflicients.
So too has z(1—z)P},_,(z) since we take a derivative, which also is an alge-
braic operation Z[z] — Z[z] which decreases the degree of the polynomial
by 1. We even get a recursion for P:

Pi(2) = (kPyo—1(2) + P4 (2))2 + 2° P4 (2)



