Complex Analysis, Summary

Matthijs Muis

March 4, 2024

Acknowledgement My collection of chapter summaries is based on the NWI-WB093: COMPLEX ANALYSIS (2023/24) by Wadim Zudilin. I made almost no changes to the structure, except that I added a Preliminaries, and worked out the in-text exercises.

3 Power Series and Analytic Functions

Definition 3.1. analytic functions

 $f : \mathbb{C} \supset \Omega \rightarrow \mathbb{C}$ is **analytic** at $c \in \Omega$ if there is a sequence $(a_n)_n$ and a R > 0 such that on the disk D(c, R), the following series converges to f(z):

$$\sum_{k=0}^{\infty} a_n \cdot (z-c)^k = f(z)$$

If this equation is valid at all $c \in \Omega$, we say f is analytic on Ω

Analytic functions on a metric space Ω are always smooth (i.e. $C^{\infty}(\Omega)$). The converse need not to hold: Consider $\Omega = \mathbb{R}$ and

$$f(x) := \begin{cases} 0 & x \le 0\\ e^{-\frac{1}{x}} & x > 0 \end{cases}$$

We see

$$f^{(n)}(x) = \begin{cases} 0 & x < 0\\ p_n(y)e^{-y} & y = \frac{1}{x}, \ x > 0 \end{cases}$$

Where for each $n \in \mathbb{N}$, $p_n(y) \in \mathbb{R}[y]$. Since we know $\lim_{y\to\infty} \frac{p(y)}{e^y} = 0$ for any \mathbb{R} -polynomial, it follows that $f^{(n)}$ exists and is continuous on Ω . Yet f has all its derivatives equal to zero at x = 0, so its power series representation at 0 is $\sum_{k\in\mathbb{N}} 0$, which clearly does not converge to f(z) for z > 0. So f is not analytic at 0. Indeed, if Ω is a metric space, then any $f : \Omega \to \mathbb{R}$ that is 0 on an open subset of Ω must have power series representation 0 there, and it follows that any analytic function on Ω that is zero on an open subset, is the zero function.

Lemma 3.2. On D(0,1), the series $\sum_{k=0}^{\infty} z^k$ converges absolutely to $\frac{1}{1-z}$

Proof. Partial sums:

$$\sum_{k=0}^N z^k = \frac{1-z^{N+1}}{1-z}$$

If |z| < 1 then $|z|^{N+1} \to 0$ (Analysis 1), therefore $z \to 0$ too. So we can take the limit $z \to \infty$ above to conclude absolute convergence. Since \mathbb{C} is complete, this implies convergence on the disk.

Lemma 3.3. Abel's lemma

If a power series $\sum_{k=0}^{\infty} a_k z^k$ converges at $z_0 \in \mathbb{C}$, then it converges absolutely in all $z \in D(0, z_0)$

Proof. For $\sum_{k=0}^{\infty} a_k z^k$ converges, it follows $a_k z_0^k \to 0$ as $k \to 0$. This means that $|a_k||z|^k$ is bounded in \mathbb{R} , say by C. For any $z \in D(0, z_0)$, we have

$$\sum_{k=0}^{\infty} |a_k z^k| = \sum_{k=0}^{\infty} |a_k| |z_0|^k \frac{|z|^k}{|z_0|^k} \le \sum_{k=0}^{\infty} C \frac{|z|^k}{|z_0|^k} \le \frac{C}{1 - \frac{|z|}{|z_0|}}$$

The series $\sum_{k=0}^{\infty} |a_k z^k|$ being bounded implies its absolute converges by its monotonicity.

Theorem 3.4. If the power series $\sum_{k=0}^{\infty} a_k (z-a)^k$ converges in a disk D(a, R), then it converges absolutely and uniformly on any closed disk $\overline{D(a, r)}$ with r < R

Proof. We can w.l.o.g. assume a = 0, else we can consider the power series as a function of the variable z - a. Then, apply Abel's lemma to conclude for any r < R that there is absolute convergence for all $|z - a| < r + \epsilon < R$, implying absolute convergence of the series on the disk $|z - a| \le r$. This implies that with $M_n = a_n r^n$, the series $\sum_{n=0}^{\infty} M_n$ converges. By $a_n(z - a)^n \le M_n$ on this compact disk, we can use the M-test of Weierstraß to conclude that $\sum_{k=0}^{\infty} a_k(z - a)$ converges uniformly on the disk. It also converges absolutely by the same argument applied to $|a_k(a - z)| \in [a - r, a + r]$.

Theorem 3.5. Assume that a function $f : \Omega \to \mathbb{C}$ is analytic at $a \in \Omega$ and represented by the power series

$$\sum_{n=0}^{\infty} a_n (z-a)^n$$

in the disk D(a, R). Then

$$f'(z) = \sum_{n=0}^{\infty} a_n (z-a)^{n-1}$$

and this series converges in the same disk.

In the proof we appeal to the **root test**:

Lemma 3.6. $\sum_{k=0}^{\infty} b_k$, let $C = \limsup_{k \to \infty} \sqrt[n]{|b_k|}$, which may be $+\infty$.

- If C < 1 then $\sum_{k=0}^{\infty} b_k$ converges absolutely.
- If C > 1 then $\sum_{k=0}^{\infty} b_k$ diverges.

As a consequence for a power series $\sum_{k=0}^{\infty} a_k (z-a)^k$, it converges for $|z-a| < \frac{1}{C}$.

Proof. W.l.o.g. a = 0. Since $\limsup_{n \to \infty} \sqrt[n]{n} = 1$, the series $\sum_{n=0}^{\infty} a_n z^n$ and $f'(z) = \sum_{n=0}^{\infty} a_n z^{n-1}$ both have radius of convergence

$$\frac{1}{\limsup_{k \to \infty} \sqrt[k]{|a_k|}} = R$$

So indeed $\sum_{n=0}^{\infty} a_n z^{n-1}$ converges on the same disk. Next, pick any) < r < R and |z| < r. Then pick an N such that

$$\sum_{n>N} na_n z^n < \epsilon$$

The remainder uses the triangle inequality: By openness of the disk D(0,r)around z, in particular for $h \in D(0, |z| - r)$ we have $w = z + h \in D(0, r)$, we have:

$$\begin{split} |\frac{f(w) - f(z)}{w - z} - \sum_{n=1}^{\infty} na_n z^{n-1}| &= |\sum_{k=0}^{\infty} \frac{a_n w^n - a_n z^n}{w - z} - \sum_{n=0}^{\infty} na_n z^{n-1}| \\ &= |\sum_{k=0}^{\infty} a_n \left(\frac{w^n - z^n}{w - z} - nz^{n-1}\right)| \\ &= |\sum_{k=0}^{N} a_n \left(\sum_{k=0}^{n-1} w^k z^{n-1-k} - nz^{n-1}\right)| \\ &\leq |\sum_{n=0}^{N} a_n \left(\sum_{k=0}^{n-1} w^k z^{n-1-k} - nz^{n-1}\right)| \\ &+ \sum_{n>N} a_n \left(\sum_{k=0}^{n-1} w^k z^{n-1-k} - nz^{n-1}\right)| \\ &+ \sum_{n>N} a_n \left(\sum_{k=0}^{n-1} w^k z^{n-1-k} - nz^{n-1}\right)| \\ &+ \sum_{n>N} a_n \left(\sum_{k=0}^{n-1} w^k z^{n-1-k} - nz^{n-1}\right)| \\ &+ \sum_{n>N} 2na_n r^n \\ &< |\sum_{n=0}^{N} a_n \left(\sum_{k=0}^{n-1} w^k z^{n-1-k} - nz^{n-1}\right)| \\ &+ \sum_{n>N} 2na_n r^n \\ &< |\sum_{n=0}^{N} a_n \left(\sum_{k=0}^{n-1} w^k z^{n-1-k} - nz^{n-1}\right)| \\ &+ 2\epsilon \end{split}$$

We now use continuity of the polynomial $w \mapsto \sum_{n=0}^{N} a_n \sum_{k=0}^{n-1} w^k z^{n-1-k}$ at z to conclude that there is a $\delta > 0$ with for all $w \in D(z, \min\{|z| - r, \delta\})$,

$$\left|\sum_{n=0}^{N} a_n \left(\sum_{k=0}^{n-1} w^k z^{n-1-k} - n z^{n-1}\right)\right| < \epsilon$$

From which it follows

$$|\frac{f(w) - f(z)}{w - z} - \sum_{n=1}^{\infty} na_n z^{n-1}| < 3\epsilon$$

For w in a $\delta(\epsilon)$ -disk around z, and we conclude.

Exercise 3.7. (a) For $z \in D(0, 1)$, compute the limit

$$\sum_{n=1}^{\infty} n z^n$$

(b) Show that for each k > 0, there exists a polynomial $P_k(t) \in \mathbb{Z}[t]$ with integer coefficients of degree k - 1 such that

$$\sum_{n=0}^{\infty} n^k z^n = \frac{P_k(z)}{(1-z)^{k+1}}$$

Proof. (a) We already have that $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ holds on the disk D(0,1). Therefore, we can conclude that on the same disk:

$$\sum_{n=1}^{\infty} nz^n = \frac{d}{dz} \left(\frac{1}{1-z}\right) = \frac{1}{(1-z)^2}$$

(b) We showed the base case k = 1. Next, assume k > 1 and that we already have a k - 2-degree polynomial P_{k-1} with integer coefficients such that:

$$\sum_{n=0}^{\infty} n^{k-1} z^n = \frac{P_{k-1}(z)}{(1-z)^k}$$

and that particular the right hand side converges on the disk D(0, 1). The lemma gives that

$$\sum_{n=1}^{\infty} n^k z^{n-1} = \frac{d}{dz} \frac{P_{k-1}(z)}{(1+z)^k}$$

Note that we can add the term n = 0 since it is 0. Also, we can use convergence on the disk to take a factor $z \in D(0, 1)$ through the series:

$$\sum_{n=0}^{\infty} n^k z^n = z \frac{d}{dz} \frac{P_{k-1}(z)}{(1+z)^k}$$

Finally, we obtain the derivative of the right side through the quotient rule:

$$z\frac{d}{dz}\frac{P_{k-1}(z)}{(1+z)^k} = z\frac{-k(1-z)^{k-1}P_{k-1}(z) - (1-z)^k P'_{k-1}(z)}{(1-z)^{2k}}$$
$$= \frac{-kzP_{k-1}(z) - z(1-z)P'_{k-1}(z)}{(1-z)^{k+1}}$$

Clearly, $-kzP_{k-1}(z)$ has degree k-2+1 = k-1 and integer coefficients. So too has $z(1-z)P'_{k-1}(z)$ since we take a derivative, which also is an algebraic operation $\mathbb{Z}[z] \to \mathbb{Z}[z]$ which decreases the degree of the polynomial by 1. We even get a recursion for P:

$$P_k(z) = (kP_{k-1}(z) + P'_{k-1}(z))z + z^2 P'_{k-1}(z)$$