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3 Power Series and Analytic Functions

Definition 3.1. analytic functions
f : C ⊃ Ω → C is analytic at c ∈ Ω if there is a sequence (an)n and a

R > 0 such that on the disk D(c,R), the following series converges to f(z):

∞∑
k=0

an · (z − c)k = f(z)

If this equation is valid at all c ∈ Ω, we say f is analytic on Ω

Analytic functions on a metric space Ω are always smooth (i.e. C∞(Ω)).
The converse need not to hold: Consider Ω = R and

f(x) :=

{
0 x ≤ 0

e−
1
x x > 0

We see

f (n)(x) =

{
0 x < 0

pn(y)e
−y y = 1

x , x > 0

Where for each n ∈ N, pn(y) ∈ R[y]. Since we know limy→∞
p(y)
ey = 0 for any

R-polynomial, it follows that f (n) exists and is continuous on Ω. Yet f has all
its derivatives equal to zero at x = 0, so its power series representation at 0 is∑

k∈N 0, which clearly does not converge to f(z) for z > 0. So f is not analytic
at 0. Indeed, if Ω is a metric space, then any f : Ω → R that is 0 on an open
subset of Ω must have power series representation 0 there, and it follows that
any analytic function on Ω that is zero on an open subset, is the zero function.

Lemma 3.2. On D(0, 1), the series
∑∞

k=0 z
k converges absolutely to 1

1−z
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Proof. Partial sums:
N∑

k=0

zk =
1− zN+1

1− z

If |z| < 1 then |z|N+1 → 0 (Analysis 1), therefore z → 0 too. So we can take
the limit z → ∞ above to conclude absolute convergence. Since C is complete,
this implies convergence on the disk.

Lemma 3.3. Abel’s lemma
If a power series

∑∞
k=0 akz

k converges at z0 ∈ C, then it converges absolutely
in all z ∈ D(0, z0)

Proof. For
∑∞

k=0 akz
k converges, it follows akz

k
0 → 0 as k → 0. This means

that |ak||z|k is bounded in R, say by C. For any z ∈ D(0, z0), we have

∞∑
k=0

|akzk| =
∞∑
k=0

|ak||z0|k
|z|k

|z0|k
≤

∞∑
k=0

C
|z|k

|z0|k
≤ C

1− |z|
|z0|

The series
∑∞

k=0 |akzk| being bounded implies its absolute converges by its
monotonicity.

Theorem 3.4. If the power series
∑∞

k=0 ak(z−a)k converges in a disk D(a,R),

then it converges absolutely and uniformly on any closed disk D(a, r) with r < R

Proof. We can w.l.o.g. assume a = 0, else we can consider the power series
as a function of the variable z − a. Then, apply Abel’s lemma to conclude
for any r < R that there is absolute convergence for all |z − a| < r + ϵ < R,
implying absolute convergence of the series on the disk |z−a| ≤ r. This implies
that with Mn = anr

n, the series
∑∞

n=0 Mn converges. By an(z − a)n ≤ Mn

on this compact disk, we can use the M-test of Weierstraß to conclude that∑∞
k=0 ak(z − a) converges uniformly on the disk. It also converges absolutely

by the same argument applied to |ak(a− z)| ∈ [a− r, a+ r].

Theorem 3.5. Assume that a function f : Ω → C is analytic at a ∈ Ω and
represented by the power series

∞∑
n=0

an(z − a)n

in the disk D(a,R). Then

f ′(z) =

∞∑
n=0

an(z − a)n−1

and this series converges in the same disk.

In the proof we appeal to the root test:
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Lemma 3.6.
∑∞

k=0 bk , let C = lim supk→∞
n
√
|bk|, which may be +∞.

• If C < 1 then
∑∞

k=0 bk converges absolutely.

• If C > 1 then
∑∞

k=0 bk diverges.

As a consequence for a power series
∑∞

k=0 ak(z−a)k, it converges for |z−a| < 1
C .

Proof. W.l.o.g. a = 0. Since lim supn→∞
n
√
n = 1, the series

∑∞
n=0 anz

n and
f ′(z) =

∑∞
n=0 anz

n−1 both have radius of convergence

1

lim supk→∞
k
√
|ak|

= R

So indeed
∑∞

n=0 anz
n−1 converges on the same disk.

Next, pick any ) < r < R and |z| < r. Then pick an N such that∑
n>N

nanz
n < ϵ

The remainder uses the triangle inequality: By openness of the disk D(0, r)
around z, in particular for h ∈ D(0, |z| − r) we have w = z + h ∈ D(0, r), we
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have:

|f(w)− f(z)

w − z
−

∞∑
n=1

nanz
n−1| = |

∞∑
k=0

anw
n − anz

n

w − z
−

∞∑
n=0

nanz
n−1|

= |
∞∑
k=0

an

(
wn − zn

w − z
− nzn−1

)
|

= |
N∑

k=0

an

(
n−1∑
k=0

wkzn−1−k − nzn−1

)
|

≤ |
N∑

n=0

an

(
n−1∑
k=0

wkzn−1−k − nzn−1

)
|

+
∑
n>N

an

(
n−1∑
k=0

|w|k|z|n−1−k + n|z|n−1

)

< |
N∑

n=0

an

(
n−1∑
k=0

wkzn−1−k − nzn−1

)
|

+
∑
n>N

an

(
n−1∑
k=0

rkrn−1−k + nrn−1

)

= |
N∑

n=0

an

(
n−1∑
k=0

wkzn−1−k − nzn−1

)
|

+
∑
n>N

2nanr
n

< |
N∑

n=0

an

(
n−1∑
k=0

wkzn−1−k − nzn−1

)
|

+ 2ϵ

We now use continuity of the polynomial w 7→
∑N

n=0 an
∑n−1

k=0 w
kzn−1−k at z

to conclude that there is a δ > 0 with for all w ∈ D(z,min{|z| − r, δ}),

|
N∑

n=0

an

(
n−1∑
k=0

wkzn−1−k − nzn−1

)
| < ϵ

From which it follows

|f(w)− f(z)

w − z
−

∞∑
n=1

nanz
n−1| < 3ϵ

For w in a δ(ϵ)-disk around z, and we conclude.
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Exercise 3.7. (a) For z ∈ D(0, 1), compute the limit

∞∑
n=1

nzn

(b) Show that for each k > 0, there exists a polynomial Pk(t) ∈ Z[t] with
integer coefficients of degree k − 1 such that

∞∑
n=0

nkzn =
Pk(z)

(1− z)k+1

Proof. (a) We already have that
∑∞

n=0 z
n = 1

1−z holds on the disk D(0, 1).
Therefore, we can conclude that on the same disk:

∞∑
n=1

nzn =
d

dz

(
1

1− z

)
=

1

(1− z)2

(b) We showed the base case k = 1. Next, assume k > 1 and that we already
have a k − 2-degree polynomial Pk−1 with integer coefficients such that:

∞∑
n=0

nk−1zn =
Pk−1(z)

(1− z)k

and that particular the right hand side converges on the disk D(0, 1). The
lemma gives that

∞∑
n=1

nkzn−1 =
d

dz

Pk−1(z)

(1 + z)k

Note that we can add the term n = 0 since it is 0. Also, we can use
convergence on the disk to take a factor z ∈ D(0, 1) through the series:

∞∑
n=0

nkzn = z
d

dz

Pk−1(z)

(1 + z)k

Finally, we obtain the derivative of the right side through the quotient
rule:

z
d

dz

Pk−1(z)

(1 + z)k
= z

−k(1− z)k−1Pk−1(z)− (1− z)kP ′
k−1(z)

(1− z)2k

=
−kzPk−1(z)− z(1− z)P ′

k−1(z)

(1− z)k+1

Clearly, −kzPk−1(z) has degree k− 2+ 1 = k− 1 and integer coefficients.
So too has z(1−z)P ′

k−1(z) since we take a derivative, which also is an alge-
braic operation Z[z] → Z[z] which decreases the degree of the polynomial
by 1. We even get a recursion for P :

Pk(z) = (kPk−1(z) + P ′
k−1(z))z + z2P ′

k−1(z)
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