Complex Analysis, Summary

Matthijs Muis

March 4, 2024

Acknowledgement My collection of chapter summaries is based on the NWI-WB093: COMPLEX ANALYSIS (2023/24) by Wadim Zudilin. I made almost no changes to the structure, except that I added a Preliminaries, and worked out the in-text exercises.

2 Holomorphic Functions

We now turn the final remark of Chapter 1 into a theorem:

Theorem 2.1. Cauchy-Riemann equations

If $f : \mathbb{C} \supset \Omega \rightarrow \mathbb{C}$, f(z) = u(x, y) + iv(x, y) where $x = \Re(z)$, $y = \Im(z)$, is holomorphic at $c \in \mathbb{C}$, then:

$$\partial_x u(c) = \partial_y v(c)$$
$$\partial_y u(c) = -\partial_x v(c)$$

And moreover:

$$f'(c) = \partial_x u(c) + i \partial_x v(c)$$
$$= \partial_y v(c) - i \partial_x u(c)$$

On the other hand, if f satisfies the Cauchy-Riemann equations in $c \in \mathbb{C}$, then f is holomorphic at c.

Proof. Write f(x + iy) = u(x, y) + iv(x, y), then if we regard f as a function $f: (x, y) \mapsto (u(x, y), v(x, y))$, i.e. a function $\mathbb{R}^2 \to \mathbb{R}^2$, then we can derive from

$$\lim_{w \to z} \frac{f(w) - f(z)}{w - z} = C$$

two limits, one along the reals:

$$C = \lim_{x \to z_1} \frac{u(x, y) + iv(x, y) - [u(z_1, z_2) + iv(z_1, z_2)]}{x + iz_2 - [z_1 + iz_2]}$$
$$= \lim_{x \to z_1} \frac{u(x, y) + iv(x, y) - [u(z_1, z_2) + iv(z_1, z_2)]}{x - z_1}$$
$$= \partial_x u(z_1, z_2) + i\partial_x v(z_1, z_2)$$

And one along the imaginary axis:

$$C = \lim_{y \to z_2} \frac{u(x, y) + iv(x, y) - [u(z_1, z_2) + iv(z_1, z_2)]}{(z_1 + iy - [z_1 + iz_2])}$$

=
$$\lim_{y \to z_2} \frac{u(x, y) + iv(x, y) - [u(z_1, z_2) + iv(z_1, z_2)]}{i(y - z_2)}$$

=
$$\frac{1}{i} \partial_y u(z_1, z_2) + \frac{1}{i} \cdot i \partial_y v(z_1, z_2)$$

=
$$-i \partial_y u(z_1, z_2) + \partial_y v(z_1, z_2)$$

This now gives that the real and imaginary parts of these numbers should coincide and should equal C:

$$\partial_x u(z_1, z_2) = \partial_y v(z_1, z_2)$$
$$-\partial_y u(z_1, z_2) = \partial_x v(z_1, z_2)$$

Exercise 2.2. Prove the converse: if f(x+iy) = u(x, y) + iv(x, y) is a function $f : \mathbb{C} \supset \Omega \rightarrow \mathbb{C}$, where u, v are $C^1(\{(x, y) : x + iy \in \Omega\})$ and satisfy the Cauchy-Riemann equations at $a \in \mathbb{R}^2$, then f is holomorphic at $a_1 + ia_2 \in \mathbb{C}$.

Proof. Consider the Jacobian $J_a f$, which writes as

$$J_a f = \begin{pmatrix} \partial_x u(a) & \partial_y u(a) \\ \partial_x v(a) & \partial_y v(a) \end{pmatrix} = \begin{pmatrix} c_1 & c_2 \\ -c_2 & c_1 \end{pmatrix}$$

Now consider $C = c_1 - ic_2$. Note the minus, it will reappear in the below fraction. Then, for any $z \in \mathbb{C}$, write $\delta = z - a$

$$\frac{f(z) - f(a) - C(z - a)}{z - a} = \frac{u(z_1, z_2) + iv(z_1, z_2) - u(a_1, a_2) + iv(a_1, a_2) - (c_1\delta_1 + c_2\delta_2 + i(c_1\delta_2 - c_2\delta_1))}{z - a}$$
$$= \frac{\left(1 \quad i\right) \left[\begin{pmatrix} u(z_1, z_2) \\ v(z_1, z_2) \end{pmatrix} - \begin{pmatrix} u(a_1, a_2) \\ v(a_1, a_2) \end{pmatrix} - \begin{pmatrix} c_1 & c_2 \\ -c_2 & c_1 \end{pmatrix} \begin{pmatrix} \delta_1 \\ \delta_2 \end{pmatrix} \right]}{z - a}$$

And letting $z \to a$, this goes to:

$$\begin{pmatrix} 1 & i \end{pmatrix} \lim_{z \to a} \frac{\begin{pmatrix} u(z) \\ v(z) \end{pmatrix} - \begin{pmatrix} u(a) \\ v(a) \end{pmatrix} - (J_a f) \begin{pmatrix} \delta_1 \\ \delta_2 \end{pmatrix}}{z - a} = \begin{pmatrix} 1 & i \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0$$

Therefore, $C = c_1 - ic_2$ is indeed the complex derivative

This means we don't need the complex numbers to define holomorphisms: they are simply functions $\mathbb{R}^2 \supset \Omega \rightarrow \mathbb{R}^2$ that are differentiable at $z \in \mathbb{R}^2$ such that $J_z f$ is a skew-symmetric matrix. **Exercise 2.3.** Check that the functions

$z\mapsto\Im z$	$z \mapsto \Re z$
$z \mapsto z $	$z\mapsto \overline{z}$

are not holomorphic on \mathbb{C} . At the same time, they are differentiable as functions from \mathbb{R}^2 to \mathbb{R}^2 (when we exclude the origin for the last function).

Proof. The problems already arise on the main diagonal:

- For $\Im: \partial_x u(z) = \partial_x 0 = 0$, while $\partial_y v(z) = \partial_y y = 1$.
- For $|\cdot|$: $\partial_x u(z) = \partial_x \sqrt{x^2 + y^2} = \frac{x}{|z|}$, while $\partial_y v(z) = \frac{y}{|z|}$.
- For \Re : $\partial_x u(z) = x$, while $\partial_y v(z) = \partial_y 0 = 0$.
- For \overline{z} : $\partial_x u(z) = \partial_x x = 1$, while $\partial_y v(z) = \partial_y (-y) = -1$.

Corrolary 2.4. If $f, g : \mathbb{C} \supset \Omega \rightarrow \mathbb{C}$ are holomorphic at $z \in \mathbb{C}$. Then f + g and $f \cdot g$ are holomorphic at z and

$$(f+g)'(z) = f'(z) + g'(z) (f \cdot g)'(z) = f'(z) \cdot g(z) + f(z) \cdot g'(z)$$

Proof. We immediately get by the ordinary sum- and chain rule that the sum f + g or product $f \cdot g$ of two holomorphic functions f, g is differentiable with $D_z(f+g) = D_z f + D_z g$, $D_z(f \cdot g) = f(z)D_z g + g(z)D_z f$ Because matrices of the form

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

form a subring of $(GL_2(\mathbb{R}), +, \cdot, I_2, 0_2)$, we find that the Jacobians found from the original sum- and product rule are again skew-symmetric. We find the corresponding complex differentials (f+g)'(z) and $(f \cdot g)'(z)$ by mapping these matrices to their corresponding complex number via the isomorphism

$$M \mapsto \overline{\varphi^{-1}(M)}$$

This means (f+g)'(z) = f'(z)+g'(z) and $(f \cdot g)'(z) = f'(z) \cdot g(z)+f(z) \cdot g'(z)$. \Box

Definition 2.5. Conformal mappings

We say $f; \mathbb{R}^d \supset \Omega \rightarrow \mathbb{R}^d$ is **conformal** at $a \in \Omega$ if for any pair γ_1, γ_2 of smooth curves $\gamma_1, \gamma_2 : I \rightarrow \mathbb{R}^d$ (where I is an interval) passing through a, say $\gamma_1(t_1) = \gamma_2(t_2) = a$, the angle between the tangent vectors $\gamma'_1(t_1), \gamma'_2(t_2)$ is preserved, in the sense that it equals the angle between $(f \circ \gamma_1)'(t_1)$ and $(f \circ \gamma_2)'(t_2)$:

$$\frac{\langle \gamma_1'(t_1), \gamma_2'(t_2) \rangle}{|\gamma_1'(t_1)| |\gamma_2'(t_2)|} = \frac{\langle (f \circ \gamma_1)'(t_1), (f \circ \gamma_2)'(t_2) \rangle}{|(f \circ \gamma_1)'(t_1)| |(f \circ \gamma_2)'(t_2)|}$$

In \mathbb{C} , this writes as

$$\frac{\gamma_1'(t_1)\gamma_2'(t_2)}{|\gamma_1'(t_1)||\gamma_2'(t_2)|} = \frac{(f \circ \gamma_1)'(t_1)(f \circ \gamma_2)'(t_2)}{|(f \circ \gamma_1)'(t_1)||(f \circ \gamma_2)'(t_2)|}$$

Theorem 2.6. If $f : \mathbb{C} \supset \Omega \rightarrow \mathbb{C}$ is regular and holomorphic at $a \in \mathbb{C}$, it is conformal at $a \in \mathbb{C}$.

Proof. By Cauchy-Riemann, $J_a f$ is a skew-symmetric matrix $\begin{pmatrix} c_1 & -c_2 \\ c_2 & c_1 \end{pmatrix}$, which we can write as a constant times a rotation matrix, say $J_a f = rR = r \cdot \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Here r > 0 and in particular, we need $r \neq 0$, which follows from the assumption that f is regular. Clearly, Ru and Rv have the same angle between them as u and v (which can algebraically be verified!), and by the chain rule, $f \circ \gamma'(t) = (J_a f)(\gamma'(t)) = rR\gamma'$. So we get:

$$\begin{aligned} \frac{\langle (f \circ \gamma_1)'(t_1), (f \circ \gamma_2)'(t_2) \rangle}{|(f \circ \gamma_1)'(t_1)||(f \circ \gamma_2)'(t_2)|} &= \frac{\langle rR(\gamma_1'(t_1)), rR(\gamma_2'(t_2)) \rangle}{r|R(\gamma_1'(t_1))|r|R(\gamma_2'(t_2))|} \\ &= \frac{r^2}{r^2} \frac{\langle \gamma_1'(t_1), \gamma_2'(t_2) \rangle}{|\gamma_1'(t_1)||\gamma_2'(t_2)|} \\ &= \frac{\langle \gamma_1'(t_1), \gamma_2'(t_2) \rangle}{|\gamma_1'(t_1)||\gamma_2'(t_2)|} \end{aligned}$$

Having seen what is so special about this situation in \mathbb{R}^2 , Let's write this more shortly using notation in \mathbb{C} , where there is also the chain rule $(f \circ \gamma)'(t) = f'(\gamma(t)) \cdot \gamma'(t)$:

$$\frac{(f \circ \gamma_1)'(t_1)\overline{(f \circ \gamma_2)'(t_2)}}{|(f \circ \gamma_1)'(t_1)||(f \circ \gamma_2)'(t_2)|} = \frac{f'(a)\gamma_1'(t_1)\overline{f'(a)\gamma_2'(t_2)}}{|f'(a)\gamma_1'(t_1)||f'(a)\gamma_2'(t_2)|} \\ = \frac{\gamma_1'(t_1)\overline{\gamma_2'(t_2)}}{|\gamma_1'(t_1)||\gamma_2'(t_2)|}$$

There seems to be much less going on. The proof in \mathbb{R}^2 was included to show the structure that is working in the background.

Theorem 2.7. Conversely, if $f : \Omega \to \mathbb{C}$ is conformal at $z \in \mathbb{C}$, then f is holomorphic at z.

Proof. Since we assume that $f \circ \gamma : \mathbb{R} \to \mathbb{R}^2$ is differentiable in the \mathbb{R}^2 -sense at t such that $\gamma(t) = z$ for any curve $\gamma \in C^1(\mathbb{R}, \mathbb{R}^2)$, we find that f is also differentiable, by approaching z along any curve γ . Then, we can apply the chain rule to get:

$$(f \circ \gamma)'(t) = (D_z f)\gamma'(t)$$

Now try the curves $\xi : t \mapsto (t, 0)$ and $\mu : t \mapsto (0, t)$, we get

$$\begin{pmatrix} \partial_x u(z) \\ \partial_x v(z) \end{pmatrix} = (f \circ \xi)'(t) = (D_z f)(\xi'(t)) = (D_z f) \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} \partial_y u(z) \\ \partial_y v(z) \end{pmatrix} = (f \circ \mu)'(t) = (D_z f)(\mu'(t)) = (D_z f) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

It follows that the Jacobian $D_z f$ must be

$$D_z f = \begin{pmatrix} \partial_x u(z) & \partial_y v(z) \\ \partial_x u(z) & \partial_y v(z) \end{pmatrix}$$

But this Jacobian has to be a conformal mapping $\mathbb{R}^2 \to \mathbb{R}^2$, and for \mathbb{R}^2 know that this is only the case if it is a rotation. From this follows the skew-symmetry of $D_z f$ and therefore f is holomorphic at z.

Definition 2.8. harmonic function

A function $f : \mathbb{R}^d \supset \Omega \to \mathbb{R}^d$ is called **harmonic** if $f \in \mathbb{C}^2(\Omega)$ and:

 $\Delta f = 0$

Where $\Delta = \langle \nabla, \nabla \rangle = \sum_{k=1}^{d} \partial_{kk}^2$ (the Laplace operator).

Theorem 2.9. If $f : \mathbb{C} \supset \Omega \to \mathbb{C}$ is holomorphic and $u = \Re f$, $v = \Im f$ are in $C^2(\Omega)$ then both u and v are harmonic functions on on $\Omega \subset \mathbb{R}^2$.

Proof. By Cauchy-Riemann, $\partial_x u = \partial_y v$ and $\partial_y v = -\partial_x v$ on Ω . Together with Schwarz' theorem, which says that if $u \in C^{(\Omega)}$, then $\partial_k \partial_j u = \partial_j \partial_k u$ for any $j, k \in [d]$, it follows:

$$\partial_x \partial_x u = \partial_x (\partial_y v) = \partial_y \partial_x v = \partial_y (-\partial_y u) = -\partial_y \partial_y u \implies \Delta u = 0$$
$$\partial_x \partial_x v = \partial_x (-\partial_y u) = -\partial_x \partial_y u = -\partial_y \partial_x u = -\partial_y \partial_y v \implies \Delta v = 0$$

Theorem 2.10. Vice versa, if u is harmonic on Ω , then there is a v, harmonic on Ω such that f(z) = u(x, y) + iv(x, y) is holomorphic on Ω .

Definition 2.11. We call v the harmonic conjugate of u.

Proof. We already have $u \in C^2(\Omega)$ and $\partial_x \partial_x u = -\partial_y \partial_y u$ on Ω . We want a $v \in C^2(\Omega)$ with $\partial_y v = \partial_x u$ on Ω . The approach will be an integral:

$$v(x,y) = \int_0^y \partial_x u(x,t) dt$$

Where we follow calculus conventions: take the integral over [0, y] if y > 0, else take – the integral over [y, 0]. This integral is well-defined since $\partial_x u(x, t)$ is continuous at $(x, t)\Omega$ and therefore in particular $t \mapsto \partial_x u(t, y)$ is continuous hence Riemann integrable.

By the fundamental theorem of calculus, we also get that:

$$\partial_y v(x,y) = -\partial_y u(x,y)$$

While by applying Leibniz' rule (which applies since $\partial_x u$ is continuously differentiable by $u \in C^2(\Omega)$):

$$\partial_x v(x,y) = \partial_x \int_0^y \partial_x u(x,t) dt$$
$$= \int_0^y \partial_x \partial_x u(x,t) dt$$

Following the given $\partial_{xx}^2 u = \partial_{yy}^2 u$, and applying Leibniz's rule with respect to y (backward), then the fundamental theorem of calculus, we arrive at:

$$\dots = \int_0^y -\partial_y \partial_y u(x,t) dt$$
$$= -\int_0^y \partial_y \partial_y u(x,t) dt$$
$$= -\partial_y \int_0^y \partial_y u(x,t) dt$$
$$= -\partial_y u(x,y)$$

And these are the Cauchy-Riemann equations, giving that f = u + iv is holomorphic. Harmonicity of v follows from the fact that v is $C^2(\Omega)$ by the fundamental theorem of calculus. Therefore, we can directly apply the previous implication

f holomorphic,
$$\Im f, \Re f \in C^1(\Omega) \implies u, v$$
 harmonic

Lemma 2.12. Let $f : D \to \mathbb{C}$ be holomorphic on an open disk D = D(a, r), centred at $a \in \mathbb{C}$ of radius r > 0. If f'(z) = 0 for all $z \in D$ then f is constant on D.

Proof. Let $y \in D$, then let $\gamma : [0,1] \to \mathbb{C}$ be defined as the segment $\gamma(t) = a + t(y - a)$. This is a \mathbb{C}^{∞} -curve, therefore there is a $t_0 \in [0,1]$ (by the mean value theorem) such that:

$$f(a) - f(y) = \frac{d}{dt} f(\gamma(t))|_{t=t_0} = f'(\gamma(t_0))\gamma'(t_0) = f'(a(1-t_0) + t_0y)(y-a)$$

Now, the right hand size is 0 by f'(z) = 0 for all $z \in D$. So f(y) = f(a) for all $y \in D$.

Lemma 2.13. Let $f : \Omega \to \mathbb{C}$ be holomorphic on an open connected set $\Omega \subset \mathbb{C}$. If f'(z) = 0 for all $z \in \Omega$ then f is constant on Ω .

Proof. Let $y \in D$, then let $\gamma : [0,1] \to \mathbb{C}$ be a continuous arc $\gamma : [0,1] \to \mathbb{C}$ connecting a and y. Since Ω is open, it contains a an open disk D(w,r) around every $w \in \gamma([0,1])$. Let $\{D_w\}_{w \in \gamma([0,1])}$ be such an open cover of γ . Since γ is continuous and [0,1] is compact, $\gamma([0,1])$ is compact and we can extract a finite cover $D_{w_1} \cup \ldots \cup D_{w_n}$. This gives n segments lying in each D_{w_j} , connecting a with w_1, w_1 with w_2, \ldots, w_n with y. We can prove, using the preceding lemma, by induction that $f(w_j) = f(a)$ for every j = 1, ..., n, and next prove that $f(y) = f(w_n) = f(a)$.

Corrolary 2.14. If f and g are holomorphic maps on an open connected domain $\Omega \subset \mathbb{C}$ and f' = g' on Ω , then f - g is constant on Ω .

Exercise 2.15. For a holomorphic map $f : \Omega \to \mathbb{C}$ show that the following are equivalent:

- (i) f is constant;
- (ii) $\Re f$ and $\Im f$ are constant;
- (*iii*) f' = 0;
- (iv) |f| is constant;

Proof. (i) \implies (ii): let f be constant, so there is a $z \in \mathbb{C}$ with f(z) = c for all $z \in \Omega$. Then $\Re f(z) = \Re(c)$ for all $z \in \Omega$, therefore $\Re f$ is constant on Ω . Similarly $\Im f(z) = \Im(c)$ for all $z \in \Omega$, so $\Im f$ is constant on Ω . This proves (ii).

(ii) \implies (iii). f is holomorphic, so it has a complex derivative, which is (due to Theorem 2.1) given by

$$f'(z) = \partial_x u(z) + i \partial_x v(z), \quad z \in \Omega$$

But u and v are $\Re f$ and $\Im f$ respectively, and these are assumed to be constant and therefore have $\partial_x u = 0$ and $\partial_x v = 0$. This implies $f' = \partial_x u + i \partial_x v =$ 0 + i0 = 0 in the domain Ω .

(iii) \implies (iv). f' = 0 in the domain. f can also be regarded as map $\Omega \to \mathbb{R}^2$, where $\Omega \subset \mathbb{R}^2$, in which case it is differentiable (because it is holomorphic, and holomorphicity is stronger than differentiability in $\mathbb{R}^2 \to \mathbb{R}^2$) and its jacobian at all $z \in \Omega$ is

$$D_z f = \begin{pmatrix} c_1 & -c_2 \\ c_2 & c_1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Since $f'(z) = c_1 + ic_2 = 0 + i0$. Now, |f| may not be holomorphic as $z \mapsto |z|$ is not. However, $z \mapsto |f(z)|^2 = u^2(z) + v^2(z)$ where f = u + iv, is differentiable when regarded as a function $\Omega \to \mathbb{R}$, since u and v are differentiable. By $\partial_x u = \partial_x v = \partial_y u = \partial_y v = 0$ (see the Jacobian), we have:

$$\partial_x(|f|^2) = 2u\partial_x u + 2v\partial_x v = 0, \quad \partial_y(|f|^2) = 2u\partial_y u + 2v\partial_y v = 0$$

Therefore, $|f|^2$ has $\partial_x(|f|^2) = 0$ and $\partial_y(|f|^2) = 0$, and we know that it is totally differentiable, so from Analysis 2 it follows that $|f|^2$ is contant on Ω . From this it immediately follows that $|f| = \sqrt{|f|^2}$ is also constant on Ω .

(iv) \Longrightarrow (i): If |f| is constant on Ω then $|f|^2$ is constant on Ω , therefore if f = u + iv we have $|f|^2 = u^2 + v^2$ is constant. Since f is holomorphic, u and v have partial derivatives, and in particular since $\partial_x(|f|^2) = 0$ and $\partial_y(|f|^2) = 0$ (as f is a constant function $\Omega \to \mathbb{R}$, so use analysis 2 again), we get the equalities:

$$2u\partial_x u + 2v\partial_x v = \partial_x (|f|^2) = 0$$

$$2u\partial_y u + 2v\partial_y v = \partial_y (|f|^2) = 0$$

By holomorphicity, $\partial_x u = \partial_y v$ and $\partial_y u = -\partial_x v$, and substituting this leads to

$$2u\partial_y v + 2v\partial_x v = \partial_x(|f|^2) = 0$$
$$-2u\partial_y v + 2v\partial_x v = \partial_x(|f|^2) = 0$$

Adding these equations gives $4v\partial_x v = 0$ on the domain. Since v and $\partial_x v$ are both continuous on Ω , this can only hold if $\{v = 0\} \cup \{\partial_x v = 0\} = \Omega$. Assume for a contradiction that there is an open $D \subset \Omega$ with $\partial_x v \neq 0$ on D. The openness is possible by continuity of $\partial_x v$. By $v\partial_x v = 0$, we need that v = 0 on D. This means v is constant on an open subset D of Ω . So $\partial_x v(z) = 0$ for an (interior) point $z \in D$ (Analysis 2, applied to a function $\Omega \to \mathbb{R}$), contradicting our assumption that $\partial_x v \neq 0$ on D. This shows $\partial_x v = 0$ everywhere. We had $\partial_x |f|^2 = 2u\partial_x u + 2v\partial_x v$, therefore $2u\partial_x u = 0$ because $\partial_x |f|^2 = 0$ and $2v\partial_x v = 0$. From $2u\partial_x u = 0$, it follows $\partial_x u = 0$ by the same argument as applied to v: assume $\partial_x u \neq 0$ somewhere, then it must be $\neq 0$ on an open set $D \subset \Omega$, therefore u = 0 on that open set, but then $\partial_x u(z) = 0$ for interior points $z \in D$, contradiction. Hence both $\partial_x u$ and $\partial_x v$ are 0 on Ω .

Finally $f' = \partial_x u + i \partial_x v = 0 + i0 = 0$ on Ω . This proves (ii), but we need to prove (i). (ii) \Longrightarrow (i) is precisely Theorem 2.4, so we conclude (i).

Having shown (i) \Longrightarrow (ii) \Longrightarrow (iii) \Longrightarrow (iv) \Longrightarrow (i), we conclude equivalence.

Exercise 2.16. Let $f : \Omega \to \mathbb{C}$ be holomorphic on a connected domain $\Omega \subset \mathbb{C}$ and $\Delta = \partial_{xx}^2 + \partial_{yy}^2$ be the Laplacian. Show

$$\Delta\left(|f(z)|^2\right) = 4|f'(x)|^2$$

Proof. Write f = u + iv where u = u(x, y), v = v(x, y) where $x = \Re z$, $y = \Im z$.

$$\begin{split} \Delta(|f|^2) &= \partial_{xx}^2(u^2 + v^2) + \partial_{yy}^2(u^2 + v^2) \\ &= 2u\partial_{xx}^2u + 2(\partial_x u)^2 \\ &+ 2v\partial_{xx}^2v + 2(\partial_x v)^2 \\ &+ 2u\partial_{yy}^2u + 2(\partial_y u)^2 \\ &+ 2v\partial_{yy}^2v + 2(\partial_y v)^2 \\ &= 2u\Delta u + 2v\Delta v + 2((\partial_x u)^2 + (\partial_y u)^2 + (\partial_x v)^2 + (\partial_y v)^2) \\ &= 2((\partial_x u)^2 + (\partial_y u)^2 + (\partial_x v)^2 + (\partial_y v)^2) \end{split}$$

While $4|f'|^2 = 4|\partial_x u + i\partial_x v|^2 = 4((\partial_x u)^2 + (\partial_x v)^2)$. We are almost there: just remove the ∂_y using Cauchy-Riemann's equalities: $\partial_x u = \partial_y v$ and $\partial_y u = -\partial_x v$ give:

$$\begin{split} \Delta(|f|^2) &= \dots = 2((\partial_x u)^2 + (\partial_y u)^2 + (\partial_x v)^2 + (\partial_y v)^2) \\ &= 2((\partial_x u)^2 + (-\partial_x v)^2 + (\partial_x v)^2 + (\partial_x u)^2) \\ &= 2(2(\partial_x v)^2 + 2(\partial_x u)^2) \\ &= 4((\partial_x v)^2 + (\partial_x u)^2) \end{split}$$

L			
-	-	-	