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2 Holomorphic Functions

We now turn the final remark of Chapter 1 into a theorem:

Theorem 2.1. Cauchy-Riemann equations
If f : C ⊃ Ω → C, f(z) = u(x, y) + iv(x, y) where x = ℜ(z), y = ℑ(z), is

holomorphic at c ∈ C, then:

∂xu(c) = ∂yv(c)

∂yu(c) = −∂xv(c)

And moreover:

f ′(c) = ∂xu(c) + i∂xv(c)

= ∂yv(c)− i∂xu(c)

On the other hand, if f satisfies the Cauchy-Riemann equations in c ∈ C, then
f is holomorphic at c.

Proof. Write f(x + iy) = u(x, y) + iv(x, y), then if we regard f as a function
f : (x, y) 7→ (u(x, y), v(x, y)), i.e. a function R2 → R2, then we can derive from

lim
w→z

f(w)− f(z)

w − z
= C

two limits, one along the reals:

C = lim
x→z1

u(x, y) + iv(x, y)− [u(z1, z2) + iv(z1, z2)]

x+ iz2 − [z1 + iz2]

= lim
x→z1

u(x, y) + iv(x, y)− [u(z1, z2) + iv(z1, z2)]

x− z1
= ∂xu(z1, z2) + i∂xv(z1, z2)
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And one along the imaginary axis:

C = lim
y→z2

u(x, y) + iv(x, y)− [u(z1, z2) + iv(z1, z2)]

(z1 + iy − [z1 + iz2])

= lim
y→z2

u(x, y) + iv(x, y)− [u(z1, z2) + iv(z1, z2)]

i(y − z2)

=
1

i
∂yu(z1, z2) +

1

i
· i∂yv(z1, z2)

= −i∂yu(z1, z2) + ∂yv(z1, z2)

This now gives that the real and imaginary parts of these numbers should
coincide and should equal C:

∂xu(z1, z2) = ∂yv(z1, z2)

−∂yu(z1, z2) = ∂xv(z1, z2)

Exercise 2.2. Prove the converse: if f(x+ iy) = u(x, y)+ iv(x, y) is a function
f : C ⊃ Ω → C, where u, v are C1({(x, y) : x + iy ∈ Ω}) and satisfy the
Cauchy-Riemann equations at a ∈ R2, then f is holomorphic at a1 + ia2 ∈ C.

Proof. Consider the Jacobian Jaf , which writes as

Jaf =

(
∂xu(a) ∂yu(a)
∂xv(a) ∂yv(a)

)
=

(
c1 c2
−c2 c1

)
Now consider C = c1 − ic2. Note the minus, it will reappear in the below
fraction. Then, for any z ∈ C, write δ = z − a

f(z)− f(a)− C(z − a)

z − a
=

u(z1, z2) + iv(z1, z2)− u(a1, a2) + iv(a1, a2)− (c1δ1 + c2δ2 + i(c1δ2 − c2δ1))

z − a

=

(
1 i

) [(u(z1, z2)
v(z1, z2)

)
−

(
u(a1, a2)
v(a1, a2)

)
−

(
c1 c2
−c2 c1

)(
δ1
δ2

)]
z − a

And letting z → a, this goes to:

(
1 i

)
lim
z→a

(
u(z)
v(z)

)
−

(
u(a)
v(a)

)
− (Jaf)

(
δ1
δ2

)
z − a

=
(
1 i

)(0
0

)
= 0

Therefore, C = c1 − ic2 is indeed the complex derivative

This means we don’t need the complex numbers to define holomorphisms:
they are simply functions R2 ⊃ Ω → R2 that are differentiable at z ∈ R2 such
that Jzf is a skew-symmetric matrix.
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Exercise 2.3. Check that the functions

z 7→ ℑz z 7→ ℜz
z 7→ |z| z 7→ z

are not holomorphic on C. At the same time, they are differentiable as functions
from R2 to R2 (when we exclude the origin for the last function).

Proof. The problems already arise on the main diagonal:

• For ℑ: ∂xu(z) = ∂x0 = 0, while ∂yv(z) = ∂yy = 1.

• For | · |: ∂xu(z) = ∂x
√
x2 + y2 = x

|z| , while ∂yv(z) =
y
|z| .

• For ℜ: ∂xu(z) = x, while ∂yv(z) = ∂y0 = 0.

• For z: ∂xu(z) = ∂xx = 1, while ∂yv(z) = ∂y(−y) = −1.

Corrolary 2.4. If f, g : C ⊃ Ω → C are holomorphic at z ∈ C . Then f + g
and f · g are holomorphic at z and

(f + g)′(z) = f ′(z) + g′(z)

(f · g)′(z) = f ′(z) · g(z) + f(z) · g′(z)

Proof. We immediately get by the ordinary sum- and chain rule that the sum
f + g or product f · g of two holomorphic functions f, g is differentiable with
Dz(f + g) = Dzf +Dzg, Dz(f · g) = f(z)Dzg + g(z)Dzf Because matrices of
the form (

a b
−b a

)
form a subring of (GL2(R),+, ·, I2, 02), we find that the Jacobians found from
the original sum- and product rule are again skew-symmetric. We find the
corresponding complex differentials (f + g)′(z) and (f · g)′(z) by mapping these
matrices to their corresponding complex number via the isomorphism

M 7→ φ−1(M)

This means (f+g)′(z) = f ′(z)+g′(z) and (f ·g)′(z) = f ′(z)·g(z)+f(z)·g′(z).

Definition 2.5. Conformal mappings
We say f ;Rd ⊃ Ω → Rd is conformal at a ∈ Ω if for any pair γ1, γ2 of

smooth curves γ1, γ2 : I → Rd (where I is an interval) passing through a, say
γ1(t1) = γ2(t2) = a, the angle between the tangent vectors γ′

1(t1), γ
′
2(t2) is pre-

served, in the sense that it equals the angle between (f ◦γ1)′(t1) and (f ◦ γ2)′(t2):

⟨γ′
1(t1), γ

′
2(t2)⟩

|γ′
1(t1)||γ′

2(t2)|
=

⟨(f ◦ γ1)′(t1), (f ◦ γ2)′(t2)⟩
|(f ◦ γ1)′(t1)||(f ◦ γ2)′(t2)|
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In C, this writes as

γ′
1(t1)γ

′
2(t2)

|γ′
1(t1)||γ′

2(t2)|
=

(f ◦ γ1)′(t1)(f ◦ γ2)′(t2)
|(f ◦ γ1)′(t1)||(f ◦ γ2)′(t2)|

Theorem 2.6. If f : C ⊃ Ω → C is regular and holomorphic at a ∈ C, it is
conformal at a ∈ C.

Proof. By Cauchy-Riemann, Jaf is a skew-symmetric matrix

(
c1 −c2
c2 c1

)
, which

we can write as a constant times a rotation matrix, say Jaf = rR = r ·(
cos θ − sin θ
sin θ cos θ

)
. Here r > 0 and in particular, we need r ̸= 0, which fol-

lows from the assumption that f is regular. Clearly, Ru and Rv have the same
angle between them as u and v (which can algebraically be verified!), and by
the chain rule, f ◦ γ′(t) = (Jaf)(γ

′(t)) = rRγ′. So we get:

⟨(f ◦ γ1)′(t1), (f ◦ γ2)′(t2)⟩
|(f ◦ γ1)′(t1)||(f ◦ γ2)′(t2)|

=
⟨rR(γ′

1(t1)), rR(γ′
2(t2))⟩

r|R(γ′
1(t1))|r|R(γ′

2(t2))|

=
r2

r2
⟨γ′

1(t1), γ
′
2(t2)⟩

|γ′
1(t1)||γ′

2(t2)|

=
⟨γ′

1(t1), γ
′
2(t2)⟩

|γ′
1(t1)||γ′

2(t2)|

Having seen what is so special about this situation in R2, Let’s write this more
shortly using notation in C, where there is also the chain rule (f ◦ γ)′(t) =
f ′(γ(t)) · γ′(t):

(f ◦ γ1)′(t1)(f ◦ γ2)′(t2)
|(f ◦ γ1)′(t1)||(f ◦ γ2)′(t2)|

=
f ′(a)γ′

1(t1)f
′(a)γ′

2(t2)

|f ′(a)γ′
1(t1)||f ′(a)γ′

2(t2)|

=
γ′
1(t1)γ

′
2(t2)

|γ′
1(t1)||γ′

2(t2)|

There seems to be much less going on. The proof in R2 was included to show
the structure that is working in the background.

Theorem 2.7. Conversely, if f : Ω → C is conformal at z ∈ C, then f is
holomorphic at z.

Proof. Since we assume that f ◦ γ : R → R2 is differentiable in the R2-sense
at t such that γ(t) = z for any curve γ ∈ C1(R,R2), we find that f is also
differentiable, by approaching z along any curve γ. Then, we can apply the
chain rule to get:

(f ◦ γ)′(t) = (Dzf)γ
′(t)
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Now try the curves ξ : t 7→ (t, 0) and µ : t 7→ (0, t), we get(
∂xu(z)
∂xv(z)

)
= (f ◦ ξ)′(t) = (Dzf)(ξ

′(t)) = (Dzf)

(
1
0

)
(
∂yu(z)
∂yv(z)

)
= (f ◦ µ)′(t) = (Dzf)(µ

′(t)) = (Dzf)

(
0
1

)
It follows that the Jacobian Dzf must be

Dzf =

(
∂xu(z) ∂yv(z)
∂xu(z) ∂yv(z)

)
But this Jacobian has to be a conformal mapping R2 → R2, and for R2 know
that this is only the case if it is a rotation. From this follows the skew-symmetry
of Dzf and therefore f is holomorphic at z.

Definition 2.8. harmonic function
A function f : Rd ⊃ Ω → Rd is called harmonic if f ∈ C2(Ω) and:

∆f = 0

Where ∆ = ⟨∇,∇⟩ =
∑d

k=1 ∂
2
kk (the Laplace operator).

Theorem 2.9. If f : C ⊃ Ω → C is holomorphic and u = ℜf , v = ℑf are in
C2(Ω) then both u and v are harmonic functions on on Ω ⊂ R2.

Proof. By Cauchy-Riemann, ∂xu = ∂yv and ∂yv = −∂xv on Ω. Together with
Schwarz’ theorem, which says that if u ∈ C(Ω), then ∂k∂ju = ∂j∂ku for any
j, k ∈ [d], it follows:

∂x∂xu = ∂x(∂yv) = ∂y∂xv = ∂y(−∂yu) = −∂y∂yu =⇒ ∆u = 0

∂x∂xv = ∂x(−∂yu) = −∂x∂yu = −∂y∂xu = −∂y∂yv =⇒ ∆v = 0

Theorem 2.10. Vice versa, if u is harmonic on Ω, then there is a v, harmonic
on Ω such that f(z) = u(x, y) + iv(x, y) is holomorphic on Ω.

Definition 2.11. We call v the harmonic conjugate of u.

Proof. We already have u ∈ C2(Ω) and ∂x∂xu = −∂y∂yu on Ω. We want a
v ∈ C2(Ω) with ∂yv = ∂xu on Ω. The approach will be an integral:

v(x, y) =

∫ y

0

∂xu(x, t)dt

Where we follow calculus conventions: take the integral over [0, y] if y > 0,
else take − the integral over [y, 0]. This integral is well-defined since ∂xu(x, t)
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is continuous at (x, t)Ω and therefore in particular t 7→ ∂xu(t, y) is continuous
hence Riemann integrable.

By the fundamental theorem of calculus, we also get that:

∂yv(x, y) = −∂yu(x, y)

While by applying Leibniz’ rule (which applies since ∂xu is continuously differ-
entiable by u ∈ C2(Ω)):

∂xv(x, y) = ∂x

∫ y

0

∂xu(x, t)dt

=

∫ y

0

∂x∂xu(x, t)dt

Following the given ∂2
xxu = ∂2

yyu, and applying Leibniz’s rule with respect to y
(backward), then the fundamental theorem of calculus, we arrive at:

... =

∫ y

0

−∂y∂yu(x, t)dt

= −
∫ y

0

∂y∂yu(x, t)dt

= −∂y

∫ y

0

∂yu(x, t)dt

= −∂yu(x, y)

And these are the Cauchy-Riemann equations, giving that f = u+iv is holomor-
phic. Harmonicity of v follows from the fact that v is C2(Ω) by the fundamental
theorem of calculus. Therefore, we can directly apply the previous implication

f holomorphic, ℑf,ℜf ∈ C1(Ω) =⇒ u, v harmonic

Lemma 2.12. Let f : D → C be holomorphic on an open disk D = D(a, r),
centred at a ∈ C of radius r > 0. If f ′(z) = 0 for all z ∈ D then f is constant
on D.

Proof. Let y ∈ D, then let γ : [0, 1] → C be defined as the segment γ(t) =
a + t(y − a). This is a C∞-curve, therefore there is a t0 ∈ [0, 1] (by the mean
value theorem) such that:

f(a)− f(y) =
d

dt
f(γ(t))|t=t0 = f ′(γ(t0))γ

′(t0) = f ′(a(1− t0) + t0y)(y − a)

Now, the right hand size is 0 by f ′(z) = 0 for all z ∈ D. So f(y) = f(a) for all
y ∈ D.
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Lemma 2.13. Let f : Ω → C be holomorphic on an open connected set Ω ⊂ C.
If f ′(z) = 0 for all z ∈ Ω then f is constant on Ω.

Proof. Let y ∈ D, then let γ : [0, 1] → C be a continuous arc γ : [0, 1] → C
connecting a and y. Since Ω is open, it contains a an open disk D(w, r) around
every w ∈ γ([0, 1]). Let {Dw}w∈γ([0,1]) be such an open cover of γ. Since γ is
continuous and [0, 1] is compact, γ([0, 1]) is compact and we can extract a finite
cover Dw1

∪ ... ∪ Dwn
. This gives n segments lying in each Dwj

, connecting
a with w1, w1 with w2, ... , wn with y. We can prove, using the preceding
lemma, by induction that f(wj) = f(a) for every j = 1, ..., n, and next prove
that f(y) = f(wn) = f(a).

Corrolary 2.14. If f and g are holomorphic maps on an open connected do-
main Ω ⊂ C and f ′ = g′ on Ω, then f − g is constant on Ω.

Exercise 2.15. For a holomorphic map f : Ω → C show that the following are
equivalent:

(i) f is constant;

(ii) ℜf and ℑf are constant;

(iii) f ′ = 0;

(iv) |f | is constant;

Proof. (i) =⇒ (ii): let f be constant, so there is a z ∈ C with f(z) = c for
all z ∈ Ω. Then ℜf(z) = ℜ(c) for all z ∈ Ω, therefore ℜf is constant on Ω.
Similarly ℑf(z) = ℑ(c) for all z ∈ Ω, so ℑf is constant on Ω. This proves (ii).

(ii) =⇒ (iii). f is holomorphic, so it has a complex derivative, which is
(due to Theorem 2.1) given by

f ′(z) = ∂xu(z) + i∂xv(z), z ∈ Ω

But u and v are ℜf and ℑf respectively, and these are assumed to be constant
and therefore have ∂xu = 0 and ∂xv = 0. This implies f ′ = ∂xu + i∂xv =
0 + i0 = 0 in the domain Ω.

(iii) =⇒ (iv). f ′ = 0 in the domain. f can also be regarded as map Ω → R2,
where Ω ⊂ R2, in which case it is differentiable (because it is holomorphic, and
holomorphicity is stronger than differentiability in R2 → R2) and its jacobian
at all z ∈ Ω is

Dzf =

(
c1 −c2
c2 c1

)
=

(
0 0
0 0

)
Since f ′(z) = c1 + ic2 = 0 + i0. Now, |f | may not be holomorphic as z 7→ |z| is
not. However, z 7→ |f(z)|2 = u2(z) + v2(z) where f = u + iv, is differentiable
when regarded as a function Ω → R, since u and v are differentiable. By
∂xu = ∂xv = ∂yu = ∂yv = 0 (see the Jacobian), we have:

∂x(|f |2) = 2u∂xu+ 2v∂xv = 0, ∂y(|f |2) = 2u∂yu+ 2v∂yv = 0
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Therefore, |f |2 has ∂x(|f |2) = 0 and ∂y(|f |2) = 0, and we know that it is totally
differentiable, so from Analysis 2 it follows that |f |2 is contant on Ω. From this
it immediately follows that |f | =

√
|f |2 is also constant on Ω.

(iv) =⇒ (i): If |f | is constant on Ω then |f |2 is constant on Ω, therefore if
f = u+ iv we have |f |2 = u2 + v2 is constant. Since f is holomorphic, u and v
have partial derivatives, and in particular since ∂x(|f |2) = 0 and ∂y(|f |2) = 0 (as
f is a constant function Ω → R, so use analysis 2 again), we get the equalities:

2u∂xu+ 2v∂xv = ∂x(|f |2) = 0

2u∂yu+ 2v∂yv = ∂y(|f |2) = 0

By holomorphicity, ∂xu = ∂yv and ∂yu = −∂xv, and substituting this leads to

2u∂yv + 2v∂xv = ∂x(|f |2) = 0

−2u∂yv + 2v∂xv = ∂x(|f |2) = 0

Adding these equations gives 4v∂xv = 0 on the domain. Since v and ∂xv are
both continuous on Ω, this can only hold if {v = 0} ∪ {∂xv = 0} = Ω. Assume
for a contradiction that there is an open D ⊂ Ω with ∂xv ̸= 0 on D. The
openness is possible by continuity of ∂xv. By v∂xv = 0, we need that v = 0 on
D. This means v is constant on an open subset D of Ω. So ∂xv(z) = 0 for an
(interior) point z ∈ D (Analysis 2, applied to a function Ω → R), contradicting
our assumption that ∂xv ̸= 0 on D. This shows ∂xv = 0 everywhere. We
had ∂x|f |2 = 2u∂xu + 2v∂xv, therefore 2u∂xu = 0 because ∂x|f |2 = 0 and
2v∂xv = 0. From 2u∂xu = 0, it follows ∂xu = 0 by the same argument as
applied to v: assume ∂xu ̸= 0 somewhere, then it must be ̸= 0 on an open set
D ⊂ Ω, therefore u = 0 on that open set, but then ∂xu(z) = 0 for interior points
z ∈ D, contradiction. Hence both ∂xu and ∂xv are 0 on Ω.

Finally f ′ = ∂xu+ i∂xv = 0+ i0 = 0 on Ω. This proves (ii), but we need to
prove (i). (ii) =⇒ (i) is precisely Theorem 2.4, so we conclude (i).

Having shown (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i), we conclude equivalence.

Exercise 2.16. Let f : Ω → C be holomorphic on a connected domain Ω ⊂ C
and ∆ = ∂2

xx + ∂2
yy be the Laplacian. Show

∆
(
|f(z)|2

)
= 4|f ′(x)|2
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Proof. Write f = u+ iv where u = u(x, y), v = v(x, y) where x = ℜz, y = ℑz.

∆(|f |2) = ∂2
xx(u

2 + v2) + ∂2
yy(u

2 + v2)

= 2u∂2
xxu+ 2(∂xu)

2

+ 2v∂2
xxv + 2(∂xv)

2

+ 2u∂2
yyu+ 2(∂yu)

2

+ 2v∂2
yyv + 2(∂yv)

2

= 2u∆u+ 2v∆v + 2((∂xu)
2 + (∂yu)

2 + (∂xv)
2 + (∂yv)

2)

= 2((∂xu)
2 + (∂yu)

2 + (∂xv)
2 + (∂yv)

2)

While 4|f ′|2 = 4|∂xu+ i∂xv|2 = 4((∂xu)
2 + (∂xv)

2). We are almost there: just
remove the ∂y using Cauchy-Riemann’s equalities: ∂xu = ∂yv and ∂yu = −∂xv
give:

∆(|f |2) = ... = 2((∂xu)
2 + (∂yu)

2 + (∂xv)
2 + (∂yv)

2)

= 2((∂xu)
2 + (−∂xv)

2 + (∂xv)
2 + (∂xu)

2)

= 2(2(∂xv)
2 + 2(∂xu)

2)

= 4((∂xv)
2 + (∂xu)

2)
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