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1 Implicit function theorem

The implicit function theorem enables one to study the shape of a solution
set to a system of equations. In particular, we have C1(RN−k×Rk,Rk) functions
Φ1, ...,Φk : (x, y) 7→ Φ1(x, y), ...,Φk(x, y) with k ≤ N and we consider S, the
solution set of the system:  Φ1(x, y) = 0

...
Φk(x, y) = 0

We expect that locally, for (a, b) ∈ S ⊂ RN−k×Rk, S could be approximated
by the affine space formed by the solution set of the following system: ⟨∇Φ1(a, b), (x− a, y − b)⟩+Φ1(a, b) = 0

...
⟨∇Φk(a, b), (x− a, y − b)⟩+Φk(a, b) = 0

Notice that this system also writes as

D(a,b)Φ(x− a, y − b) + Φ(a, b) = 0

This means that if we consider the k-subset of the variables {y1, ..., yk} ⊂
{x1, ..., xN−k, y1, ..., yk} which correspond to a k × k matrix B built from a
subset of the k final columns of J(a,b)f , and B is invertible, we can argue that
D(a,b)Φ(x− a, y − b) + Φ(a, b) = 0 if and only if

B−1(J(a,b)Φ)(x− a, y − b) +B−1Φ(a, b) = 0

, and writing J(a,b)Φ = [A|B], y = (y1, ..., yk), x = (x1, ..., xN−k), we find

y = −B−1Ax−B−1Φk(a, b)

This intuition leads us to the implicit function theorem: first, we intro-
duce some helpful notation for a partial Jacobi matrix:
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Definition 1. The partial Jacobi matrix of a function f : Ω → RM with
partial derivatives, where {i1, ..., im ⊂ [M ], {x1, ..., xn} ⊂ RN\{0}, is defined as
follows:

∂fi1 , ..., fim
∂x1, ..., xn

:=

∂x1
fi1(x) ... ∂xn

fi1(x)
... ... ...

∂x1fim(x) ... ∂xnfim(x)


This is an m × n matrix. If it is clear from the context (which is the notation
used below, in the implicit function theorem, where we name the first N − k
variables as xi and the last k variables as yj), we can also take x1, ..., xn to be
variables rather than direction vectors xi1 , ..., xin (which can also be written
with vectors ei1 , ..., ein , the standard directions).

Theorem 1. Implicit Function Theorem Let f : RN−k × Rk → Rk be

of class C1(Ω), let f(a, b) = c and let det
(

∂f1,...,fk
∂y1,...,yk

(a, b)
)

̸= 0 That means,

equivalently, that the vectors∂y1
f1(x)
...

∂y1
fk(x)

 , ...,

∂yk
f1(x)
...

∂yk
fk(x)


Are linearly independent, i.e. a basis for Rk. Then, there are open X ⊂
RN−k and open Y ⊂ Rk and a C1 function g : X → Y such that a ∈ X, b ∈ Y
and

x ∈ X, y ∈ Y, f(x, y) = c ⇐⇒ y = g(x), x ∈ X

Or,
{f = c} ∩ (X × Y ) = {(x, g(x)) : x ∈ X}

Proof. We can show that the implicit function theorem follows from the in-
verse function theorem. In fact, the two are equivalent : the inverse function
theorem also follows from the implicit function theorem.

Since f is of class C1, and we have that

(x, y) 7→ det

(
∂f1, ..., fk
∂y1, ..., yk

(x, y)

)
Is a polynomial in the partial derivatives of f , it follows that this map is con-
tinuous, hence there is an open neighbourhood in RN , which we will narrow to
a product of an open A ⊂ RN−k, and an open B ⊂ Rk such that

∀(x, y) ∈ A×B : det

(
∂f1, ..., fk
∂y1, ..., yk

(x, y)

)
̸= 0

Next, we define a new function F : A × B → RN−k × Rk, argue that it is a
diffeomorphism and use its local inverse to define g. The only thing left to do
is to pick a suitable K... We show that F (x, y) := (x, f(x, y)) will do (it might
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be a first guess, if we simply look at the dimension that we need to add to the
codomain of K, but in fact it also works). Note that

J(x,y)F =

(
(Id)N−k O

∂f1,...,fk
∂x1,...,xN−k

(a, b) ∂f1,...,fk
∂y1,...,yk

(a, b)

)

So that we get

det(J(x,y)F ) = det

(
∂f1, ..., fk
∂y1, ..., yk

(x, y)

)
̸= 0

This means K is indeed locally a diffeomorphism (because the premises of the
inverse function theorem hold) with a C1 inverse, say that there are X ⊂ A,
Y ⊂ B open, such that a ∈ X, b ∈ Y , and h : F (X × Y ) → X × Y such that
h ◦ F = F ◦ h = (Id)RN , but this means that (h1, ..., hN−k)(x, f(x, y)) = x, in
other words h(x, y) = x So denote

h(x, y) = (x, φ(x, y))

For some function φ : X × Y → Y . Now define g(x) = φ(x, c), then we get for
free that g is C1, since φ is, since h is (by the inverse function theorem). Next,
we show

{f = c} ∩ (X × Y ) ⊃ {(x, g(x)) : x ∈ X}

For this, simply note that (x, g(x)) = h(x, c) ∈ X ×Y and because f(x, g(x)) =
(FN−k+1, ..., FN )(h(x, c)) = c To prove

{f = c} ∩ (X × Y ) ⊂ {(x, g(x)) : x ∈ X}

, just note that if (x, y) ∈ X×Y and f(x, y) = c, then y = (hN−k+1, ..., hN )(F (x, y)) =
φ(x, f(x, y)) = φ(x, c) = g(x).

1.1 The derivative of the implicit function

Even though the proof of the implicit function theorem does not tell us how
to construct the implicit function, we can obtain additional information on its
derivatives.

For any i = 1, ..., k and j = 1, ..., N−k, we can take a partial derivative with
respect to xj on both sides of the equality

fi(x, g(x)) = ci

We know that the left has to be differentiable since it equals a constant function,
but since on this occasion it is also a composition of two C1-functions, we can
do this using the chain rule, getting equations for the partial derivatives of g:

∂xj
fi(x, g(x)) +

k∑
r=1

∂yr
fi(x, g(x))∂xj

gr(x) = 0
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This gives k(N − k) equations in k(N − k) unknowns, namely Jxg (which is
a linear map RN−k → Rk). More compactly, we can write the chain rule as
follows:

∂f1, ..., fk
∂x1, ..., xN−k

(x, y) +

(
∂f1, ..., fk
∂y1, ..., yk

(x, y)

)
Jxg = 0

By the assumption det
(

∂f1,...,fk
∂y1,...,yk

(x, y)
)
̸= 0 in X ×Y , this system has a unique

solution that fixes the partial derivatives of g:

Jxg = −
(
∂f1, ..., fk
∂y1, ..., yk

(x, y)

)−1(
∂f1, ..., fk

∂x1, ..., xN−k
(x, y)

)

1.2 Equivalence of the Implicit and Inverse Function The-
orem

We used the inverse function theorem to prove the implicit function theorem.
We will now show that we can also do the converse:

Proposition 1. The inverse function theorem follows from the implicit function
theorem.

Proof. Assume the implicit function theorem and let h : Ω → RN be such that
it is of class C1 in Ω and that a ∈ Ω such that det(Jah) ̸= 0.

We now need to define a suitable function f with an equality in a such that
its implicit function around a can be used to construct a C1 inverse of h. An
obvious guess, since we need h−1 : h(X) → X, which are open subsets of RN ,
is to define f : RN ×RN → RN . An implicit function would express the first N
components in the last N , so...

f(x, y) = h(x)− y

And the system is
f(x, y) = 0

With b = h(a). Now, f satisfies the assumptions of the implicit function theo-
rem:

J(a, b)f =
(
Jxh −(Id)k

)
Which has the same determinant as Jah, which is nonzero by assumption. This
means that we receive a C1 function g : X → Y , where X ∋ a, Y ∋ h(x), such
that on X × Y ,

f(x, y) = 0 ⇐⇒ x = g(y)

Or in other words,
h(x) = y ⇐⇒ x = g(y)

This makes g a left- and right-inverse. Thus, it is the inverse function we were
looking for.
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