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1 Inverse function theorem

Proposition 1. Let Ω ⊂ RN be open, and f : Ω → RM differentiable at
x ∈ Ω. Then for any S ⊂ Ω, it holds

Dxf [TxS] ⊂ Tf(x)f(S)

Proof. Let v ∈ TxS, therefore we let (xn)n∈N ⊂ S be a sequence such that
xn → x, (λn)n∈N ⊂ (0,∞) be a a sequence such that λn → 0, and such that
xn−x
λn

→ v.
If xn = x only for finitely many n ∈ N, then eventually (for n ≥ N , N

sufficiently large) xn ̸= x, and we have:

f(xn)− f(x)− (Dxf)(xn − x)

|xn − x|
→ 0

By differentiability. From this, we can rewrite, for n ≥ N :

f(xn)− f(x)

λn
=

f(xn)− f(x)− (Dxf)(v)

|xn − x|
|xn − x|

λn
+ (Dxf)

(
xn − x

λn

)
Since xn−x

λn
→ v, we have |xn−x|

λn
→ |v| < ∞, and by continuity of the differ-

ential map Dxf , we have

f(xn)− f(x)− (Dxf)(v)

|xn − x|
|xn − x|

λn
+ (Dxf)

(
xn − x

λn

)
→ 0 · |v|+ (Dxf)(v)

which implies convergence of f(xn)−f(x)
λn

to (Dxf)(v). If xn = x for infinitely
many n ∈ N, we have to conclude:

∀n ∈ N : ∃m ≥ n :
xm − x

λm
= 0 , therefore necessarily v = lim

n→∞

xn − x

λn
= 0

On the other hand, for the same m, we have

f(xm)− f(x)

λm
= 0, , therefore necessarily lim

n→∞

f(xn)− f(x)

λn
= 0 = (Dxf)(0)
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So, in both cases, limn→∞
f(xn)−f(x)

λn
= (Dxf)(v)

Finally, notice that (f(xn))n∈N is a sequence in f(S) converging to f(x)
by continuity of f . So by definition of the tangent cone, (Dxf)(v) lies in
Tf(x)f(S). This proves the inclusion.

Definition 1. A function f : RN → RM is called a homeomorphism on a set
S ⊂ RN if it is continuous, invertible and has a continuous inverse. This
definition is used on general topological spaces (X, TX), (Y, TY ) and f : X → Y ,
but on metric spaces in particular it means that

xn → x ⇐⇒ f(xn) → f(x)

For all (xn)
∞
n=1 ⊂ S and x ∈ S.

Remark 1. The inclusion Dxf [TxS] ⊂ Tf(x)f(S) might be strict, and this is
not necessarily solved when f is a homeomorphism: Let f(x) = x3 : R → R,
then f is a homeomorphism with continuous inverse x 7→ 3

√
x. Yet D0f = 0, the

zero map, hence D0f [TxS] = {0} for all S ⊂ R. On the other hand, Tf(x)f(R) =
R.

The inequality is strict because D0f is not injective. We need that Dxf is
injective ∀x ∈ Ω. This is proved and explored more carefully in the next section.

1.1 Injective differential

Proposition 2. If Ω ⊂ RN is open and f : Ω → RM is differentiable at
x ∈ Ω, and Dxf : RN → RM is injective on a linear subspace V ⊂ RN ,
that is

Dxf |V : V → RM

is injective. Then, f |x+ V : x+ V → RM is locally injective: in particular,
there exists a δ > 0 s.t.

δ|x− y| ≤ |f(x)− f(y)|, ∀y ∈ Bδ(x) ∩ (x+ V )

Moreover, if f is C1 on a neighbourhood of x, this holds uniformly:

δ|z − y| ≤ |f(z)− f(y)|, ∀y, z ∈ Bδ(x) ∩ (x+ V )

Proof. Assume, for a contradiction, the negation of this, for δ = 1
n :

∀n ∈ N : ∃xn ∈ B 1
n
(x) ∩ (x+ V ) : |xn − x| > n · |f(xn)− f(x)|

Or,

∀n ∈ N : ∃xn ∈ B 1
n
(x) ∩ (x+ V ) :

|f(xn)− f(x)|
|xn − x|

<
1

n

Now, since xn ∈ B 1
n
(x), xn → x. Moreover, for all n ∈ N, xn−x

|xn−x| ∈ SN−1, which

is a compact set. Therefore, if we pick a subsequence
xnk

−x

|xnk
−x| → v ∈ SN−1, then

2



|f(xn)−f(x)|
|xn−x| → (Dxf)(v). Now, since v ∈ SN−1, it is nonzero. Since Dxf is

injective, therefore (Dxf)(v) ̸= 0. But by the above inequality,

(Dxf)(v) = lim
k→∞

xnk
− x

|xnk
− x|

= 0

The latter limit follows since the sequence is squeezed between 0 and 1
n .

This gives the required contradiction.
For the second result, let f also be C1 in a neighbourhood of x. Now, we

can assume for a contradiction, that there exist a sequences (xn)n∈N, (yn)n∈N
such that xnyn ∈ B 1

n
(x) ∩ (x+ V ) and such that

∀n ∈ N :
|f(xn)− f(yn)|

|xn − yn|
<

1

n

Notice that both xn → x and yn → x. And, up to a subsequence, assume
|xn−yn|
|xn−yn| → v ∈ SN−1 ∩ V .

Since f is of C1(U) for some open neighbourhood U ∋ x, we have by La-
grange’s Mean value theorem, a un ∈ Sn, where Sn = xn + [0, 1](yn −xn) is the
line segment joining xn and yn, such that:

f(xn)−f(yn) = ⟨∇f(un), (xn−yn)⟩ implying
|f(xn)− f(yn)|

|xn − yn|
=

∣∣∣∣⟨∇f(un),
xn − yn
|xn − yn|

⟩
∣∣∣∣

Since xn− → x and yn → x, we can use the triangle inequality to deduce that
un → x, and by continuity of u,w 7→ ⟨∇f(u), w⟩ (since u 7→ ∇f(u) is continuous
by C1(U) ∋ f and the differential is linear, so always continuous), it follows that
we can take the limit n → ∞ to get:

lim
n→∞

⟨∇f(un),
xn − yn
|xn − yn|

⟩ = ⟨∇f(x), v⟩

Therefore,

0 = lim
n→∞

|f(xn)− f(yn)|
|xn − yn|

= lim
n→∞

∣∣∣∣⟨∇f(un),
|xn − yn|
|xn − yn|

⟩
∣∣∣∣ = |⟨∇f(x), v⟩|

Which again, contradicts injectivity of the differential on V , since v ∈ SN−1∩V ,
which does not contain 0, while DxfV v = 0

Remark 2. Note that the result of proposition 2 also writes as:

|f−1(x)− f−1(p)| ≤ 1

δ
|p− x|, ∀p ∈ f(Bδ(x) ∩ (x+ V ))

Proving that the inverse function is continuous. In the case f is C1, we have
uniform continuity:

|f−1(q)− f−1(p)| ≤ 1

δ
|p− q|, ∀p, q ∈ f(Bδ(x) ∩ (x+ V ))
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. In the case that V = RN and N = M , we will later prove that f−1 is also
differentiable.

Proposition 3. If Ω ⊂ RN is open and f : Ω → RM is differentiable at x ∈ Ω,
with Dxf injective, and f is an homeomorphism at S ⊂ Ω, then

Dxf [TxS] = Tf(x)f(S)

Proof. By contradiction! Suppose that w ∈ Tf(x)f(S) such that w is not Dx(v)

for any v ∈ TxS. Let yn → f(x) and λn → 0 such that yn−f(x)
λn

→ w. Then

we can define (xn)n∈N ⊂ S through xn = f−1(yn) and by continuity of f−1 it
follows xn → x. Now, we consider the sequence(

xn − x

λn

)
n∈N

If we take a subsequence, then yn−f(x)
λn

→ w and yn → f(x) still holds, so we

should never be able to find a subsequence such that xn−x
λn

→ v for some
v, which would then be an element of TxS, proving the contrary.

In other words, since {xn−x
λn

}n∈N ⊂ RN , where we have the Bolzano-Weierstrass
theorem, the only option that is left is that the sequence is unbounded. Up
to taking subsequences, we can assume therefore

|xn − x|
λn

> n

Now, by injectivity of the differential, we also have a δ > 0 such that

∀y ∈ Bδ(x) : δ|y − x| ≤ |f(y)− f(x)|

Take n ≥ N , for N sufficiently large that B 1
N
(x) ⊂ Bδ(x). Then, for all n ≥ N ,

we have:

δn <
δ|xn − x|

λn
≤ |f(xn)− f(x)|

λn

And this finishes the proof, because we assumed that |f(xn)−f(x)|
λn

→ |w|, and
this has now become impossible

Remark 3. The reason why, in general, Dxf [TxS] = Tf(x)f(S) fails, is

exactly because we can find w’s, which are the limits of
(

yn−f(x)
λn

)
n∈N

such

that, while we still (by homeomorphism property) have that f−1(yn) → x, the
sequence (

f−1(yn)− x

λn

)
n∈N

does not converge, not even up to subsequence, which must mean that it is
unbounded. This is what happened in the counterexample mentioned at the end
of the first section:
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f(x) = x3 : R → R, then f−1 : x 7→ 3
√
x

.

D0f = 0, hence D0f [TxS] = {0} for all S ⊂ R, while Tf(x)f(R) = R

We can take any nonzero w ∈ R = Tf(0)R = Tf(0)f(R), let it be the limit of
the sequence

xn =
w

n
→ 0, λn =

1

n3
→ 0,

f(wn )− f(0)
1
n3

=
(wn )

3 − 03

1
n3

→ w

We see then, that no matter what subsequence k 7→ nk we pick:

xnk
− 0

λnk

=
w
nk

1
n3
k

→ ∞

Due to non-injectivity of the differential, we can map non-convergent xn−x
λn

to

convergent f(xn)−f(x)
λn

. The big problem is then that some convergent f(xn)−f(x)
λn

do not have convergent xn−x
λn

, leaving Dxf [TxS] ⊂ Tf(x)f(S) strict.

1.2 Surjective differential

To quote the notes,
”When the differential of a map f : Ω → RN is surjective at a point x it

means that, locally, the map sends points in all directions.”

Proposition 4. If Ω ⊂ RN is open, f : Ω → RM differentiable, and

∀x ∈ Ω : Dxf is surjective

(in particular N ≤ M). Then

∀x ∈ Ω : ∃δ > 0 : Bδ2/2(f(x)) ⊂ f(Bδ(x))

Proof. The proof is not very intuitive:
Fix an x ∈ Ω. Let V ⊂ RN be a linear subspace of dimension M such that

Dxf |V is a linear isomorphism V ∼= RM . Since Dxf |V is injective now, we can
find a δ > 0 such that

δ|x− y| ≤ |f(x)− f(y)|, for ally ∈ Bδ(x) ∩ (x+ V )

Where we can take the closure by considering a δ′ < δ or by just stating that
f is continuous, so if y ∈ Bδ(x) ∩ (x + V ), then take a sequence (yn)n∈N ⊂
Bδ(x) ∩ (x + V ) with yn → y and take the limit in the above inequality to
conclude that it still holds in the closure.
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Okay, now let y ∈ Bδ2/2(f(x)) be any y. The goal is to show that y ∈
f(Bδ(x), so we need to find a p ∈ Bδ(x) such that f(p) = y. Consider the
function:

z 7→ |f(z)− y| on Bδ(x) ∩ (x+ V )

It is continuous so should assume its minimum on this compact set (Weier-
strass’ Theorem), say in p.

We show that p ∈ Bδ(x) ∩ (x+ V ), and later we show f(p) = y. Let’s start
at the beginning:

δ|p− x| ≤ |f(p)− f(x)| ≤ |f(p)− y|+ |f(x)− y| ≤ 2|f(x)− y| < δ2

This clarifies the somewhat strange choice of the radius δ2

2 .
Next, f(p) = y. Assume not, and let w = y − f(p) ̸= 0, therefore |w| > 0,

and since p was at minimum distance of y in f(Bδ(x)∩ (x+V )) it follows that:

B|w|(y) ∩ f(Bδ(x) ∩ (x+ V )) = ∅

And this implies that there can be no sequence yn → f(p) through f(Bδ(x) ∩ (x+ V ))

such that yn−f(p)
λn

→ w, since w ”points out of f(Bδ(x) ∩ (x+ V )), so:

w ̸∈ Tf(p)[f(Bδ(x) ∩ (x+ V ))]

By injectivity of the differential, we have δ|x−y| ≤ |f(x)−f(y)|, for ally ∈
Bδ(x) ∩ (x+ V ), we get that f is a homeomorphism on Bδ(x) ∩ (x+ V ), so
it follows that:

Tf(p)[f(Bδ(x) ∩ (x+ V ))] = (Dpf)[Tp[Bδ(x) ∩ (x+ V )]]

Since p is an internal point (here, we make fruitful use of the fact p ∈ Bδ(x) ∩
(x+ V )), it follows

Tp[Bδ(x) ∩ (x+ V )] = V, and by surjectivity, (Dpf)(V ) = RM

Which contradicts w ̸∈ Tf(p)[f(Bδ(x) ∩ (x+ V ))] in every possible way.

Remark 4. Homeomorphisms can change the differential structure of a
set. For example,

f(x) =

{
|x|∞
|x|2 x x ̸= 0

0 x = 0

Maps the boundary of the unit square Q, that is,

∂Q = ∂([−1, 1]× [−1, 1]) to the unit circle S1 = ∂B1(0)

Plainly, it ”maps a square to a circle”. It is a homeomorphism, but the square
has a corner, and the circle does not. To make this more precise, we can argue
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that tangent planes to the circle are not mapped to tangent planes, but may be
mapped to strict cones:

T(1,1)∂Q = (−∞, ]× {1} ∪ {1} × (−∞, 1]

This is a strict cone, not a linear space, whereas

Tf(1,1)∂B = T(
1√
2
, 1√

2

)S1 = {(x, y) ∈ R2 : x− y = 0} is.

But if a homeomorphism is differentiable at x and Dxf is injective, we
can conclude that tangent vector spaces get mapped to tangent vector spaces (of
equal dimension). You can calculate the partial derivatives of this particular f
to see which of these assumptions fails to hold.

1.3 Diffeomorphisms

We saw that in order to get an equality

Tf(x)f(S) = Dxf [TxS]

when mapping a tangent cone to a subset S of the domain to a tangent cone of
its image f(S), we needed the premised of Proposition 3:

1. f : Ω → RN is differentiable.

2. f : Ω → RN is a homeomorphism at S ⊂ Ω.

3. Dxf is injective.

We now introduce diffeomorphisms, which form a subclass of homeomor-
phisms that satisfy the above three properties and more. The idea that, if both
f and its first order partial derivatives are homeomorphisms, this provides easier
properties to check, and leads to theorems about the characterization of local
behaviour of these functions (in particular, the Inverse Function Theorem).

Definition 2. Diffeomorphisms
Let Ω ⊂ RN be open, and f : Ω → RN . Then f is called a diffeomorphism

if it is a homeomorphism of class C1(Omega) and also f−1 : f(Ω) → Ω is of
class C1

Proposition 5. Let Ω ⊂ RN be open and f : Ω → RN a diffeomorphism.
Then

(i) f is a homeomorphism.

(ii) For all x ∈ Ω :
det(Dxf) ̸= 0

(iii) For all x ∈ Ω :
Df(x)f

−1 = [Dxf ]
−1
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(iv) For all x ∈ Ω and for all S ⊂ Ω :

Tf(x)f(S) = Dxf [TxS]

So in particular, if TxS is a vector space, then Tf(x)f(S) is.

Proof. (i) Any diffeomorphism is a homeomorphism, according to the defini-
tion.

(ii),(iii) Let x ∈ Ω. We use that f−1(f(x)) = x and that both f and f−1 are
differentiable, to conclude by the chain rule:

[Jf(x)f
−1][Jxf ] = IdN

Therefore, we conclude that (Jf−1)(x) and (Jf)(x) are invertible, and by
homomorphism property of the determinant,

det(Jxf
−1) det(Jxf) = 1

(iv) For each x ∈ Ω and S ⊂ Ω, f is a homeomorphism at S with injective
differential at x, and therefore we can directly apply proposition 3 to
conclude.

Remark 5. The domain and target space of diffeomorphisms have the same
dimension, that is, if Ω ⊂ RM and f : Ω → RN , then M = N . We could have
ommitted this as part of the definition, since by the chain rule, we would still
have

[Jf(x)f
−1][Jxf ] = IdM

By which we would have to conclude that (Dxf) : RM → RN is invertible,
therefore M = N .

Next, we give a characterization of global diffeomorphisms in terms pf
global properties.

Theorem 1. Let Ω ⊂ RN be open, and f a function f : Ω → R. Then f is a
diffeomorphism on Ω if and only if

1. f is of class C1(Ω).

2. f is injective on Ω

3. For all x ∈ Ω, det(Jxf) ̸= 0

Proof. Since (i) follows from the definition and (ii) from injectivity of the dif-
ferential on RN ∩ Ω, and (iii) from the previous proposition in this section, if
suffices to show that (i), (ii), and (iii) imply that f is a homeomorphism on Ω
and f−1 is C1(f(Ω)).

First, f(Ω) is open, since the differential Dxf is surjective at every x ∈ Ω.
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f is continuous, i.e. C0(Ω) because it is even C1(Ω). f−1 can be defined on
f(Ω) by injectivity of f .

Next, since Dxf is injective on V = RN ⊂ RN , at each x ∈ Ω, there is a
δ > 0 such that for all y ∈ Bδ(x),

δ|x− y| ≤ |f(x)− f(y)|

We can rewrite this: if y ∈ f(Ω), where y = f(x), look at the open neigh-
bourhood f(Bδ(x)) of y. Because, for all p ∈ f(Bδ(x)),

|f−1(y)− f−1(p)| ≤ |y − p|

And in particular, it follows that f−1 is continuous.
Finally, we prove that f−1 is even differentiable. We use the characteri-

zation given in Chapter 5, and prove that there is an N × N matrix M such
that for any (yn)n∈N ⊂ f(Ω) with yn → y ∈ Ω, and (λn)n∈N ⊂ (0, 1) such that
λn → 0 and

xn − x

λn
→ w

We then have:

lim
n→∞

f−1(yn)− f−1(y)

λn
= Aw

Now, since we have to conform with the previous proposition, we know what
A should equal: [Jxf ]

−1.
Define xn = f−1(yn). Since f is a homeomorphism, xn → x where x =

f−1(y). We can without loss of generality assume that yn ̸= y for all n ∈ N.
Namely, if this holds for finitely many n, we can discard the initial segment and
argue ”up to subsequence”, while if this holds for infinitely many n, we conclude
that yn−y

λn
= 0 for infinitely many n ∈ N, so the latter sequence has to converge

to w = 0, and there is nothing to prove: for any A ∈ RN×N , A0 = 0.
Assuming this, we can follow Chapter 5 and write:

(Dxf)

(
xn − x

λn

)
=

f(xn)− f(x)

λn
(1)

+
f(xn)− f(x)− (Dxf)(xn − x)

|xn − x|
|xn − x|

|f(xn)− f(x)|
|f(xn)− f(x)

λn

(2)

By injectivity of Dxf , obtain a δ > 0 such that

δ|xn − x| ≤ |f(xn)− f(x)|

Since xn → x, let N ∈ N be sufficiently large that for all n ≥ N, we have
xn ∈ Bδ(x).
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Then, we can see:

(Dxf)

(
xn − x

λn

)
→ (Dxf)(v) since Dxf is linear hence continuous,

f(xn)− f(x)

λn
→ w by assumption,

f(xn)− f(x)− (Dxf)(xn − x)

|xn − x|
→ 0 by differentiability off at x.

|xn − x|
|f(xn)− f(x)|

≤ 1

δ
by injectivity of Dxf,

|f(xn)− f(x)

λn
→ |w| by assumption

Therefore,

|xn − x|
|f(xn)− f(x)|

|f(xn)− f(x)

λn
is bounded while

f(xn)− f(x)− (Dxf)(xn − x)

|xn − x|
→ 0

So we conclude, taking the limit on both sides, that

(Dxf)(v) = w or on a standard basis, (Jxf)(v) = w

By det(Jxf) ̸= 0, we can invert and obtain w = [Jxf ]
−1. This immediately

shows (Jxf
−1) = [Jxf ]

−1.
Finally, we show that f−1 is C1. This simply follows from the fact that the

entries of (Jxf
−1)(x) are obtained by Cramer’s rule:

[Jxf ]
−1 =

1

det((Jxf)
(cof(Jxf))

t

Where cof(A) denotes the matrix of cofactors of A.

We are now ready to prove the inverse function theorem, which gives a local
characterization of diffeomorphism.

Theorem 2. Inverse Function Theorem
Let Ω ⊂ RN open, : Ω → RN function of class C1(Ω). If there is a x ∈ Ω

such that det(Dxf) ̸= 0, then There is a r > 0 such that

f |Br(x) is a diffeomorphism

Proof. Since f is of class C1(Ω), and det(Dxf) is polynomial in the partial
derivatives ∂xif , we have that x 7→ det(Dxf) is continuous. Therefore, we
conclude that the preimage of a maximal open neighbourhood of det(Dxf) is
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open, i.e. There is a R > 0 s.t. det(Dyf) ̸= 0 ∀y ∈ BR(y). Moreover, we have
Dxf is injectve, so we can find a δ > 0 and r1 > 0 s.t.

δ|y − x| ≤ |f(y)− f(x)| ∀y ∈ Br1(x)

In particular, f is injective on Br1(x). If we set r = min{r1, R}, then we get that
f is C1(Br(x)), injective on Br(x) and with an injective derivative on Br(x). It
then follows by the above proposition that f |Br(x) is a diffeomorphism.

The usefullness lies in the situation where we apply a change of coor-
dinates. When computing an integral or rewriting a differential equation in
different coordinates, then at least locally these coordinates should define a
diffeomorphism. The trivial example would be polar coordinates, where

f(r, θ) = (r cos θ, r sin θ)

Which is a diffeomorphism from (0,∞)× (0, 2π) → R2\{x ≥ 0, y = 0}

2 Homework

See handwritten solutions (I was too lazy to typeset it in LATEX).
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