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1 Vector fields, forms and gradients

We investigate, under which conditions a vector field V : O — RN, Q c RY
is the gradient of a scalar function ¢ : Q@ — R (i.e. conservative)?.

For continuous scalar vector fields f : I — R, where [ is an interval, this is
trivially true, since we can integrate it over an interval [z, 0] or [0, z], i.e. define

F(z):= /Ow f(x)dx

(Note: here, we set ff := — [ if # < 0). By the fundamental theorem of
calculus, the derivative exists and equals f.
In general, we have seen counterexamples. For example:

Vi(z,y) —~ (y2,x2);R2 — R?

If this were a conservative vector field, V = V¢, then we would have:

p(a,y) =y* = p(z,y) =2y’ +g(y)
dop(z,y) =2° = p(a,y) = ya* + h(z)
For some functions g, h : R — R. This leads to a contradiction. We see that V'
has to satisfy certain algebraic conditions.
There is also an interplay with topology, in the sense that there are neces-

sary conditions on the shape of the domain (2: this set cannot have holes.
There is the counterexample:

V :R*\{0} — R?

y .
Ve = (I2 +y? 2 +y2)

If V were conservative, it would integrate to 0 over any closed C'- curve 7 :
[a,b] — R?; because for V = Vi, we have ¢ o7 : [a,b] — R is differentiable, so



by the fundamental theorem of calculus,

b
/ (poy) (t)dt = pory(b) —poy(a)

But, consider the C'-curve 7 : [0, 27] — R? through v(¢) = (cost,sint),:

2m
0= or(zm) —pon(0) = [ (por)
o
— [ o).y @
0271'
= /0 (sin®t + cos? t)dt = 2m
Which gives a contradiction.

1.1 Schwarz’ theorem

This theorem gives a sufficient condition for when partial derivatives in diffent
directions commute.

Theorem 1. Schwarz’ theorem
Let f: RN — R be of class C*(RYN) (i.e. has continuous partial derivatives
and continuous second-order partial derivatives 0,0, f for all v,w € RY) in
RY. Then,
Vi,j=1,...; N : 0c,0c, f = Oe,0c, f
Remark 1. The second order partial derivatives need to be continuous. Peano
found the following counterexample if this is not true:

f(m,y>:{ 0(+’ iftz,y) # (0,0)

else

To understand this, see that in polar coordinates, f writes as:

flz,y) = irz sin(46)

So f is continuous at 0. But notice that it oscillates when we let (x,y) circle
the origin, and therefore f cannot be approximated with second derivatives (i.e.
as a paraboloid). When we calculate the second order partial derivatives, we see
that 0, and 0y do not commute: this Homework 7, Exercise 1.

Definition 1. f: RY — R and z € RY, with afjf = 0;0; [ existent at every
point. The Hessian of f at x is defined as:
hf(x) .. Oiyf(x)

H,f =
Rnflx) . Rnfla)



As a corrollary of Schwarz’ theorem, for a C?(RY)-function f, the hessian
is H, f is symmetric at every point of its domain.

1.2 Differential forms

A different look at the differential D, f of a real-valued function f on an open
S C RYN at a point z. In general, we like to think of S as a manifold, although
we will define manifolds after Chapter 8. On manifolds, we only have a notion of
a directional derivative in directions v € T, S. But note that for open S C RV,
T,S = RY so directional derivatives can be taken in whatever direction v € RV
we want to. Let f:S — R be C'(M). We now denote the differential slightly
differently, namely as:

df (z) := Dy f
Then at every point z € S, df (z) is linear map in (7,.5)* = (R")*. Therefore

af : 8 — (RV)*

If we equip (R™)* with the operator norm | - |£(rN Ry, defined as:

|L|zrv R) = hax | L]
Where SV~ is defined to be the unit sphere according to the ordinary Euclidean
norm. In this setting, df(-) : « — D, f is even continuous 7,5 — (T,S)* with
respect to the norms |- g~ , | [z®~ r). We will now consider a class of functions
that this generalizes to: the 1-form. The proper definition of 1-forms requires
some differential geometry, which we will sketch for now.

Definition 2. Let S C RY be an open subset. A map w: S — (T,,S)* is called
a 1-form on S. The vector space of all 1-forms on S is denoted \*(S)

Definition 3. A more differential geometric definition of a 1-form.
Let S C RN be a differentiable manifold (roughly (and untruthfully)
speaking, the image set of a diffeomorphism (Chapter 8) ¢ : Q — S where
Q C RM s open).
We define the tangent bundle T'S of S to be the union of all tangent
cones (actually, these are now hyperplanes, see Chapter 6 for a proof of this)
at all points x € S:

T8 =J 7.5

zeS

Since S is diffeomorphic to a 2 C RM open (in our definition of a manifold),
we have TS = (Dyp)(p(T:Q)) (again, see Chapter 8).

Then a map w : TS — R is called a 1-form on S, if its restriction to any
fibre T,.S is linear: this means that, for all x € S:

wy = w|r,s : TS — R it linear.



Remark 2. Suggesting the existence of a structure \*(S). Discussing this
would go too far beyond the theory and goals of Chapter 7, and requires the
definition of tensors, etc. We will just regard N'(S) as defined in Definition 2.

Definition 4. The Vector Space Structure of \'(S)
On N\'(S) there is indeed a structure of addition and scalar multiplication
with scalars in R, making this into a vector space:

w + & through (w+ &)(x) =w(x) +&(x) in (RN)*, for allz € S
Aw through (Aw)(x) =X -w(z) in (RM)*, for allz € S

This is nothing more than recognizing that \'(R™N) is the space of vector fields
S — (RM)*), where (RN)* = L(RN,R) is a linear space, so we can define
addition and scalar multiplications pointwise on S. In fact, \*(S) is just the
space of co-vector fields on S.

Any vector field V : S — RN can be written as V = Si= 1¥Ve; where
{el,...,eN} is the standard basis {ey,...,en} or R and where V;: S — R is a
function. This is because for each x € S, we can write V(z) € RY uniquely as
a linear combination Y i = 1VV;(z)e; where Vj(z) € R

Likewise, any w € A'(M) can be written as w = Y7 = 1Vw;e?, where
{e!,...,el} is the dual basis of (R™)* corresponding to the standard basis
{61, ceey eN}.

Notice that if w is a 1-form, then w(z) € (RV)* for every z € RV and
w(z) =i = 1Nw;(x)e’ where w;(z) is just a scalar, of course.

Definition 5. We define x1,...,xn € (RN)* just as: x; is the projection on
the i-th coordinate x1 : v — v, we already know this as the dual basis{e', ...,eN}
of the standard basis {e1,...,en}. We then define dxy,...,dzy € N'(S) as:

dri(y) = z; dzi: S — (RN = R)
In Haskell: dz; := flip const x;

Lemma 1. These elementary forms form a basis of \(S), when we regard
AL(S) as a module over the function ring F(S,R) = {f : S — R}, in other
words, for all w € \*(S), we can find unique wy, ...,wn : S — R such that:

N
Ve e S:w(x)= Zwl(:r)d:cl(x)
i=1
We already saw this in different notation when we said w could be written as:
N .
w(x) = Zwi(m)el
i=1

The only_ problem with this notation is that in the equation w = Zivzl wie', the
type of €' and \'(S) does not match.



Remark 3. In particular, if f : Q — RY differentiable, then df € \*(Q2) and
for any x € Q we can write

N
df (@) = 30, - f(a)dai(x)
=1

Giving, as vectors in \*(S2), the equality:

N
df =3 0if - da;

=1

Definition 6. A 1-form w € AY(S) is said to be of C1(S) (or continuous, or
differentiable) if each of its components w; : S — R is C*(S) (or continuous,
or differentiable).

That is, every property of the 1-form is translated to a property of its
components.

Definition 7. A 1-form w € A\'(S) is said to be exact if there is a f € C1(RY)
such that
df =w

Notice that at least for the definition, we require the domain of f to be RY.
The Poincaré lemma will hold on more exotic domains, as long as they are
star-shaped (more on this later).

1.3 Poincaré Lemma

Definition 8. Let w € AY(S) be continuous and let y : [0,1] — S be piecewise
C' (we also write v € C}([0,1]), see Homework 3, Exercise 2). We define
te integral of w along v as:

/f" = /01 w( (1) (¥ (t))dt

Where the right-hand side is just an ordinary Riemann integral (it is well-defined
because of the regularity conditions on v and w).

Lemma 2. If w=df for an f:Q — R differentiable, this writes as
Ja=] (V). ()
And the chain rule gives that this equals:
o= [ e =160 - 16:0)

Theorem 2. Let w € N'(S) be continuous and v, € Cy([0,1]). Then the
following are equivalent:



(i) For all v € C}([0,1]), such that v(0) = (1), we have

/w:()
¥

(i) For all~,pu € CJ([0,1]), such that v(0) = u(0) and (1) = u(1), we have

[ ]

(iii) w is exact.

Proof. For (i) = (ii), we use that if v(0) = u(0) and (1) = (1), then we can
define the new C}([0, 1])-curve £ through:

v(2t) te(0,3]
k() == 2
0={ 0 1y e
We traverse v forwards and p backwards. Since (2), (1-) and (—1) are C?,

K is C’;([Q 1]) as their composition, and moreover it is indeed continuous at %

because v(1) = p(1). Finally, x(0) = v(0) = p(0), so & is closed, therefore by

(i):
Oz/ﬁw

The right hand side is, by definition, can be rewritten as:
1 1

o= [Tuten@y e+ [ w2 - ) -2 - ) -2

1
0 1

= [ttt =20 = )01 -2t~ D)~

1

2

Where the final equality uses linearity of w(x), for all 2. Now substitute u(t) =
2t in the first, and v(t) = 2t — 2 in the second integral:

1 0
o= [ et @i e e = [o- [
We conclude. For (ii) = (iii), we define a function f : RY — R through
f(z) ::/0 w(tx)(z)dt = /w, for any v € C}([0,1]), by (ii)

We need to show that 9, f(z) = w(z)(v) for all v in RY and all x € RY. Note

that L
90 510) = iy 20510 = 10




To compute this fraction we first find an expression of f(z + hv), by con-
necting x + hv to the origin with two segments:

S1=1[0,1]z, Sy =z+1]0,hlv

Both are parametrizable as C'*(]0, 1])-curves, and we skip the definition to argue
that

1 1
flx+ hv) = /0 w(sz)(xz)ds + /0 w(x + shv)(hv)ds

With f(z) = fol w(sz)(x)ds, this yields (using linearity of w(y)(-) in the second
equality):

[l +hv

/ (z + shv)(hv)ds
1

w(z + shv)(v)ds

/0 ! ol 4 ro)(o)dr

Then, by continuity of w(-)(v) in x, for every € > 0 there is a § > 0 such
that if |rv| = |z + rv — 2| < 4, then:

w(z +71v)(v) - w(z)(v)] <€

Meaning that, for |h| < \%I:

1

h 1
wle)e) = [ e +rowis < o [ e@e) v +rowlar

< Al sup f(@)(v) — wla + o) (v)
|h‘ re(0,h]

Proving (ii) = (iii), namely:

lim fl@thv) - f(z) = w(z)(v)

h—0 h

For (iii) = (i), we simply apply Lemma 2 and conclude.
O

Definition 9. A C1(S) 1-form w € A'(S) is closed if for all i,j € [N], we
have
@wj = iji



Definition 10. A set S C V where V is a R-vector space, is star-shaped if
there exists a y € S such that

VeeS:z+1[0,1](y—z)C S
Remark 4. Any conver set C' has, by definition
Ve,ye C:x+[0,1](y —z) CC
As a consequence, any convex set is star-shaped too.

Lemma 3. Poincaré’s Lemma
Let Q C RY be star-shaped and let w € \'(Q) be of C1(2). Then w is
exact if and only if it is closed.

Remark 5. We can be more general: the equivalence between exactness and
closedness holds on any ) that has no holes in it: the precise topological
definition of this will come in the course Topology.

As a corollary, we can restrict w to a star-shaped neigbourhood if 2 is open,
because open balls are trivially star-shaped (even convex):

Corollary 1. Let Q C RY be open and let w € N (2) be of C1(Q). Then there
exists an € > 0 for which w is exact in a ball B.(x), if and only if it is closed
in a ball Bs(x).

2 Homework

See handwritten solutions (I was too lazy to typeset it in TEX).



