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1 Vector fields, forms and gradients

We investigate, under which conditions a vector field V : Ω → RN , Ω ⊂ RN

is the gradient of a scalar function φ : Ω → R (i.e. conservative)?.
For continuous scalar vector fields f : I → R, where I is an interval, this is

trivially true, since we can integrate it over an interval [x, 0] or [0, x], i.e. define

F (x) :=

∫ x

0

f(x)dx

(Note: here, we set
∫ 0

x
:= −

∫ x

0
if x < 0). By the fundamental theorem of

calculus, the derivative exists and equals f .
In general, we have seen counterexamples. For example:

V : (x, y) 7→ (y2, x2);R2 → R2

If this were a conservative vector field, V = ∇φ, then we would have:

∂1φ(x, y) = y2 =⇒ φ(x, y) = xy2 + g(y)

∂2φ(x, y) = x2 =⇒ φ(x, y) = yx2 + h(x)

For some functions g, h : R → R. This leads to a contradiction. We see that V
has to satisfy certain algebraic conditions.

There is also an interplay with topology, in the sense that there are neces-
sary conditions on the shape of the domain Ω: this set cannot have holes.
There is the counterexample:

V : R2\{0} → R2

V (x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
If V were conservative, it would integrate to 0 over any closed C1- curve γ :
[a, b] → R2; because for V = ∇φ, we have φ ◦ γ : [a, b] → R is differentiable, so
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by the fundamental theorem of calculus,∫ b

a

(φ ◦ γ)′(t)dt = φ ◦ γ(b)− φ ◦ γ(a)

But, consider the C1-curve γ : [0, 2π] → R2 through γ(t) = (cos t, sin t),:

0 = φ ◦ γ(2π)− φ ◦ γ(0) =
∫ 2π

0

(φ ◦ γ)′(t)dt

=

∫ 2π

0

⟨V (γ(t)), γ′(t)⟩dt

=

∫ 2π

0

(sin2 t+ cos2 t)dt = 2π

Which gives a contradiction.

1.1 Schwarz’ theorem

This theorem gives a sufficient condition for when partial derivatives in diffent
directions commute.

Theorem 1. Schwarz’ theorem
Let f : RN → R be of class C2(RN ) (i.e. has continuous partial derivatives

and continuous second-order partial derivatives ∂v∂wf for all v, w ∈ RN ) in
RN . Then,

∀i, j = 1, ..., N : ∂ei∂ejf = ∂ei∂ejf

Remark 1. The second order partial derivatives need to be continuous. Peano
found the following counterexample if this is not true:

f(x, y) =

{
xy(x2−y2)

x2+y2 if(x, y) ̸= (0, 0)

0 else

To understand this, see that in polar coordinates, f writes as:

f(x, y) =
1

4
r2 sin(4θ)

So f is continuous at 0. But notice that it oscillates when we let (x, y) circle
the origin, and therefore f cannot be approximated with second derivatives (i.e.
as a paraboloid). When we calculate the second order partial derivatives, we see
that ∂x and ∂y do not commute: this Homework 7, Exercise 1.

Definition 1. f : RN → R and x ∈ RN , with ∂2
ijf := ∂i∂jf existent at every

point. The Hessian of f at x is defined as:

Hxf =

∂2
11f(x) ... ∂2

1Nf(x)
... ... ...

∂2
N1f(x) ... ∂2

NNf(x)


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As a corrollary of Schwarz’ theorem, for a C2(RN )-function f , the hessian
is Hxf is symmetric at every point of its domain.

1.2 Differential forms

A different look at the differential Dxf of a real-valued function f on an open
S ⊂ RN at a point x. In general, we like to think of S as a manifold, although
we will define manifolds after Chapter 8. On manifolds, we only have a notion of
a directional derivative in directions v ∈ TxS. But note that for open S ⊂ RN ,
TxS = RN , so directional derivatives can be taken in whatever direction v ∈ RN

we want to. Let f : S → R be C1(M). We now denote the differential slightly
differently, namely as:

df(x) := Dxf

Then at every point x ∈ S, df(x) is linear map in (TxS)
∗ = (RN )∗. Therefore

df : S → (RN )∗

If we equip (RN )∗ with the operator norm | · |L(RN ,R), defined as:

|L|L(RN ,R) = max
x∈SN−1

|Lx|

Where SN−1 is defined to be the unit sphere according to the ordinary Euclidean
norm. In this setting, df(·) : x 7→ Dxf is even continuous TxS → (TxS)

∗ with
respect to the norms | · |RN , | · |L(RN ,R). We will now consider a class of functions
that this generalizes to: the 1-form. The proper definition of 1-forms requires
some differential geometry, which we will sketch for now.

Definition 2. Let S ⊂ RN be an open subset. A map ω : S → (TxS)
∗ is called

a 1-form on S. The vector space of all 1-forms on S is denoted
∧

1(S)

Definition 3. A more differential geometric definition of a 1-form.
Let S ⊂ RN be a differentiable manifold (roughly (and untruthfully)

speaking, the image set of a diffeomorphism (Chapter 8) φ : Ω → S where
Ω ⊂ RM is open).

We define the tangent bundle TS of S to be the union of all tangent
cones (actually, these are now hyperplanes, see Chapter 6 for a proof of this)
at all points x ∈ S:

TS =
⋃
x∈S

TxS

Since S is diffeomorphic to a Ω ⊂ RM open (in our definition of a manifold),
we have TxS = (Dxφ)(φ(TxΩ)) (again, see Chapter 8).

Then a map ω : TS → R is called a 1-form on S, if its restriction to any
fibre TxS is linear: this means that, for all x ∈ S:

ωx = ω|TxS : TxS → R it linear.
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Remark 2. Suggesting the existence of a structure
∧

k(S). Discussing this
would go too far beyond the theory and goals of Chapter 7, and requires the
definition of tensors, etc. We will just regard

∧
1(S) as defined in Definition 2.

Definition 4. The Vector Space Structure of
∧

1(S)
On

∧
1(S) there is indeed a structure of addition and scalar multiplication

with scalars in R, making this into a vector space:

ω + ξ through (ω + ξ)(x) = ω(x) + ξ(x) in (RN )∗, for all x ∈ S

λω through (λω)(x) = λ · ω(x) in (RN )∗, for all x ∈ S

This is nothing more than recognizing that
∧

1(RN ) is the space of vector fields
S → (RN )∗), where (RN )∗ = L(RN ,R) is a linear space, so we can define
addition and scalar multiplications pointwise on S. In fact,

∧
1(S) is just the

space of co-vector fields on S.

Any vector field V : S → RN can be written as V =
∑

i = 1NViei where
{e1, ..., eN} is the standard basis {e1, ..., eN} or RN , and where Vi : S → R is a
function. This is because for each x ∈ S, we can write V (x) ∈ RN uniquely as
a linear combination

∑
i = 1NVi(x)ei where Vi(x) ∈ R

Likewise, any ω ∈ Λ1(M) can be written as ω =
∑

i = 1Nωie
i, where

{e1, ..., eN} is the dual basis of (RN )∗ corresponding to the standard basis
{e1, ..., eN}.

Notice that if ω is a 1-form, then ω(x) ∈ (RN )∗ for every x ∈ RN and
ω(x) =

∑
i = 1Nωi(x)e

i where ωi(x) is just a scalar, of course.

Definition 5. We define x1, ..., xN ∈ (RN )∗ just as: xi is the projection on
the i-th coordinate x1 : v 7→ vi, we already know this as the dual basis{e1, ..., eN}
of the standard basis {e1, ..., eN}. We then define dx1, ..., dxN ∈

∧
1(S) as:

dxi(y) = xi; dxi : S → (RN → R)

In Haskell: dxi := flip const xi

Lemma 1. These elementary forms form a basis of
∧
(S), when we regard∧

1(S) as a module over the function ring F(S,R) = {f : S → R}, in other
words, for all ω ∈

∧
1(S), we can find unique ω1, ..., ωN : S → R such that:

∀x ∈ S : ω(x) =

N∑
i=1

ωi(x)dxi(x)

We already saw this in different notation when we said ω could be written as:

ω(x) =

N∑
i=1

ωi(x)e
i

The only problem with this notation is that in the equation ω =
∑N

i=1 ωie
i, the

type of ei and
∧

1(S) does not match.
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Remark 3. In particular, if f : Ω → RN differentiable, then df ∈
∧

1(Ω) and
for any x ∈ Ω we can write

df(x) =

N∑
i=1

∂i · f(x)dxi(x)

Giving, as vectors in
∧

1(Ω), the equality:

df =

N∑
i=1

∂if · dxi

Definition 6. A 1-form ω ∈
∧

1(S) is said to be of C1(S) (or continuous, or
differentiable) if each of its components ωi : S → R is C1(S) (or continuous,
or differentiable).

That is, every property of the 1-form is translated to a property of its
components.

Definition 7. A 1-form ω ∈
∧

1(S) is said to be exact if there is a f ∈ C1(RN )
such that

df = ω

Notice that at least for the definition, we require the domain of f to be RN .
The Poincaré lemma will hold on more exotic domains, as long as they are
star-shaped (more on this later).

1.3 Poincaré Lemma

Definition 8. Let ω ∈
∧

1(S) be continuous and let γ : [0, 1] → S be piecewise
C1 (we also write γ ∈ C1

p([0, 1]), see Homework 3, Exercise 2). We define
te integral of ω along γ as:∫

γ

ω =

∫ 1

0

ω(γ(t))(γ′(t))dt

Where the right-hand side is just an ordinary Riemann integral (it is well-defined
because of the regularity conditions on γ and ω).

Lemma 2. If ω = df for an f : Ω → R differentiable, this writes as∫
γ

df =

∫ 1

0

⟨∇f(γ(t)), γ′(t)⟩dt

And the chain rule gives that this equals:

... =

∫ 1

0

(f ◦ γ)′(t)dt = f(γ(1))− f(γ(0))

Theorem 2. Let ω ∈
∧

1(S) be continuous and γ, µ ∈ C1
p([0, 1]). Then the

following are equivalent:
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(i) For all γ ∈ C1
p([0, 1]), such that γ(0) = γ(1), we have∫

γ

ω = 0

(ii) For all γ, µ ∈ C1
p([0, 1]), such that γ(0) = µ(0) and γ(1) = µ(1), we have∫

γ

ω =

∫
µ

ω

(iii) ω is exact.

Proof. For (i) =⇒ (ii), we use that if γ(0) = µ(0) and γ(1) = µ(1), then we can
define the new C1

p([0, 1])-curve κ through:

κ(t) :=

{
γ(2t) t ∈ [0, 1

2 ]
µ(1− 2(t− 1

2 )) t ∈ [ 12 , 1]

We traverse γ forwards and µ backwards. Since (2·), (1−) and (− 1
2 ) are C1,

κ is C1
p([0, 1]) as their composition, and moreover it is indeed continuous at 1

2
because γ(1) = µ(1). Finally, κ(0) = γ(0) = µ(0), so κ is closed, therefore by
(i):

0 =

∫
κ

ω

The right hand side is, by definition, can be rewritten as:

... =

∫ 1
2

0

ω(γ(2t))(2γ′(2t))dt+

∫ 1

1
2

ω(µ(1− 2(t− 1

2
)))(µ′(1− 2(t− 1

2
))) · 2dt

=

∫ 1

1
2

ω(µ(1− 2(t− 1

2
)))(µ′(1− 2(t− 1

2
)))(−2)dt

Where the final equality uses linearity of ω(x), for all x. Now substitute u(t) =
2t in the first, and v(t) = 2t− 2 in the second integral:

... =

∫ 1

0

ω(γ(u))(uγ′(u))du+

∫ 0

1

ω(µ(v)(µ′(v))dv =

∫
γ

ω −
∫
µ

ω

We conclude. For (ii) =⇒ (iii), we define a function f : RN → R through

f(x) :=

∫ 1

0

ω(tx)(x)dt =

∫
γ

ω, for any γ ∈ C1
p([0, 1]), by (ii)

We need to show that ∂vf(x) = ω(x)(v) for all v in RN and all x ∈ RN . Note
that

∂vf(x) = lim
h→0

f(x+ hv)− f(x)

h
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To compute this fraction we first find an expression of f(x + hv), by con-
necting x+ hv to the origin with two segments:

S1 = [0, 1]x, S2 = x+ [0, h]v

Both are parametrizable as C1([0, 1])-curves, and we skip the definition to argue
that

f(x+ hv) =

∫ 1

0

ω(sx)(x)ds+

∫ 1

0

ω(x+ shv)(hv)ds

With f(x) =
∫ 1

0
ω(sx)(x)ds, this yields (using linearity of ω(y)(·) in the second

equality):

f(x+ hv)− f(x)

h
=

1

h

∫ 1

0

ω(x+ shv)(hv)ds

=

∫ 1

0

ω(x+ shv)(v)ds

=
1

h

∫ h

0

ω(x+ rv)(v)dr

Then, by continuity of ω(·)(v) in x, for every ϵ > 0 there is a δ > 0 such
that if |rv| = |x+ rv − x| < δ, then:

|ω(x+ rv)(v)− ω(x)(v)| < ϵ

Meaning that, for |h| < δ
|v| :∣∣∣∣∣ω(x)(v)− 1

h

∫ h

0

ω(x+ rv)(v)ds

∣∣∣∣∣ ≤ 1

|h|

∫ 1

0

|ω(x)(v)− ω(x+ rv)(v)|dr

≤ 1

|h|
· |h| · sup

r∈[0,h]

|ω(x)(v)− ω(x+ rv)(v)|

≤ ϵ

Proving (ii) =⇒ (iii), namely:

lim
h→0

f(x+ hv)− f(x)

h
= ω(x)(v)

For (iii) =⇒ (i), we simply apply Lemma 2 and conclude.

Definition 9. A C1(S) 1-form ω ∈
∧

1(S) is closed if for all i, j ∈ [N ], we
have

∂iωj = ∂jωi
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Definition 10. A set S ⊂ V where V is a R-vector space, is star-shaped if
there exists a y ∈ S such that

∀x ∈ S : x+ [0, 1](y − x) ⊂ S

Remark 4. Any convex set C has, by definition

∀x, y ∈ C : x+ [0, 1](y − x) ⊂ C

As a consequence, any convex set is star-shaped too.

Lemma 3. Poincaré’s Lemma
Let Ω ⊂ RN be star-shaped and let ω ∈

∧
1(Ω) be of C1(Ω). Then ω is

exact if and only if it is closed.

Remark 5. We can be more general: the equivalence between exactness and
closedness holds on any Ω that has no holes in it: the precise topological
definition of this will come in the course Topology.

As a corollary, we can restrict ω to a star-shaped neigbourhood if Ω is open,
because open balls are trivially star-shaped (even convex):

Corollary 1. Let Ω ⊂ RN be open and let ω ∈
∧

1(Ω) be of C1(Ω). Then there
exists an ϵ > 0 for which ω is exact in a ball Bϵ(x), if and only if it is closed
in a ball Bδ(x).

2 Homework

See handwritten solutions (I was too lazy to typeset it in LATEX).
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