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1 Tangent cone and differentiability

1.1 The Tangent Cone

Definition 1. LetM ≥ 1, E ⊂ RM and x ∈ RM . Then we say a vector v ∈ RM

is tangent to E in x if there is a sequence (xk)k ⊂ E with:

lim
k→∞

xk − x

|xk − x|
=

v

|v|

or v = 0.

Remark 1. This is equivalent to: there is a sequence (xk)k ⊂ E and a sequence
(λk) ⊂ (0, 1) with xk−x

λk
→ v

Definition 2. We define the tangent cone TxE to E at x to be

TxE = {v ∈ RM : v tangent to E at x}

Proposition 1. The tangent cone TxE is a cone, that is a set such that: if
v ∈ TxE then ∀λ ≥ 0 : λv ∈ TxE

The tangent cone to a graph has various other properties, provided that the
graph comes from a differentiable function. In particular, we will show that a
function f : Ω → R is differentiable at x ∈ Ω if and only if the tangent cone to
the graph of f at (x, f(x)) ∈ Ω×R is a non-vertical linear space, meaning
it is the image of a linear map (which linear map could that be...).

The notes use the following notation: Denote the graph {(x, f(x)) : x ∈ Ω}
of f with graph(f). But given that we define functions as relations, a function
is its graph, as a set. So, to ease notation, we first repeat the definition of a
function in set theory:

Definition 3. A function A→ B is a relation, i.e. a f ⊂ A×B such that:

∀x ∈ A : ∃!y ∈ B : x f y

We denote this unique y with f(x). In this way, graph(f) = f .
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Theorem 1. Suppose Ω ⊂ RN is an open set and x ∈ Ω, and f : Ω → R and
w ∈ (RN )∗. Then the following are equivalent:

(i) f is differentiable at x and Dxf = L

(ii) If v ∈ RN = TxΩ (since Ω is open) where

lim
k→∞

xk − x

λk
= v

then it holds:

lim
k→∞

f(xk)− f(x)

λk
= Lv

We can also write this in terms of the gradient:

Theorem 2. Let Ω ⊂ RN be an open set and x ∈ Ω, and f : Ω → R and
w ∈ RN . Then the following are equivalent:

(i) f is differentiable at x and ∇f(x) = w

(ii) If v ∈ RN = TxΩ, where

lim
k→∞

xk − x

λk

then it holds:

lim
k→∞

f(xk)− f(x)

λk
= ⟨w, v⟩

Proof. We show (i) =⇒ (ii) and (ii) =⇒ (i) separately:

(i) =⇒ (ii) If xn = x only for finitely many n ∈ N, then eventually (for n ≥ N , N
sufficiently large) xn ̸= x, and we have:

f(xn)− f(x)− (Dxf)(xn − x)

|xn − x|
→ 0

By differentiability. From this, we can rewrite, for n ≥ N :

f(xn)− f(x)

λn
=
f(xn)− f(x)− (Dxf)(v)

|xn − x|
|xn − x|
λn

+ (Dxf)

(
xn − x

λn

)
Since xn−x

λn
→ v, we have |xn−x|

λn
→ |v| < ∞, and by continuity of the

differential map Dxf , we have

f(xn)− f(x)− (Dxf)(v)

|xn − x|
|xn − x|
λn

+(Dxf)

(
xn − x

λn

)
→ 0 · |v|+(Dxf)(v)

which implies convergence of f(xn)−f(x)
λn

to (Dxf)(v). If xn = x for in-
finitely many n ∈ N, we have to conclude:

∀n ∈ N : ∃m ≥ n :
xm − x

λm
, therefore necessarily v = lim

n→∞

xn − x

λn
= 0 = 0
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On the other hand, for the same m, we have

f(xm)− f(x)

λm
= 0, , therefore necessarily lim

n→∞

f(xn)− f(x)

λn
= 0 = (Dxf)(0)

So, in both cases, limn→∞
f(xn)−f(x)

λn
= (Dxf)(v)

(ii) =⇒ (i) Let (xn)n∈N be any sequence with xn → x as n → ∞. We need to prove
that the following sequence goes to 0 as n→ ∞:(

f(xn)− f(x)− L(xn − x)

|xn − x|

)
n∈N

To prove this, we use the Urysohn lemma. Pick any subsequence
of this sequence. We show that it has a further subsequence that
converges to 0, thereby the result (i) follows.

Any subsequence
(

f(xnk
)−f(x)−L(xnk

−x)

λnk

)
k∈N

comes with sequences (xnk
)k∈N.

Since
xnk

−x

|xnk
−x| ∈ SN−1, a compact set, extract a subsequence labeled with

nkl
such that

xnkl
−x

|xnkl
−x| → v ∈ SN−1. Therefore, it follows by applying (ii)

to λl = |xnkl
− x| that:

lim
l→∞

f(xnkl
)− f(x)− L(xnkl

− x)

λnkl

= Lv

= L

(
lim
l→∞

xnkl
− x

|xnkl
− x|

)
= lim

l→∞
L

(
xnkl

− x

|xnkl
− x|

)

Where the latter equality uses continuity of linear maps. Bringing the right
limit to the left side, and taking the scalar division through the linear map, it
follows:

f(xnkl
)− f(x)− L(xnkl

− x)

|xnkl
− x|

→ 0

Which was to be shown. The conclusion follows by the Urysohn property.

Proposition 2. Let Ω ⊂ RN open, x ∈ Ω, f : Ω → R differentiable at
x. Then T(x,f(x))f ⊂ RN+1 is a linear space, and it has dimension N . In
particular:

T(x,f(x))f =
{
(v, ∂vf(x)) : v ∈ RN

}
Which means that the space is generated by {(ei, ∂if(x))}Ni=1, because (v, ∂vf(x))+
(w, ∂wf(x)) = (v + w, ∂v+wf(x)) by linearity of v 7→ ∂vf(x), making it indeed
N -dimensional.
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Proof. ⊂ Let (v, p) ∈ T(x,fx)f . We need to show p = ∂vf(x). Let (xn, yn)n∈N
be the sequence in f such that xn, yn → x, f(x), where this implies yn =
f(xn) and (λn)n∈N be the sequence so that

(xn, f(xn))− (x, f(x))

λn
→ (v, p)

Since this implies that we have separate convergence of xn−x
λn

→ v and
f(xn))−f(x)

λn
→ p, while 1.1 implies that f(xn))−f(x)

λn
→ (Dxf)(v) = ∂vf(x),

it follows p = ∂vf(x).

⊃ This inclusion does not require differentiability: we only need
that ∂vf(x) exists. Let v ∈ RN , then we need to show (v, ∂vf(x)) =

limn→∞
(xn,f(xn))−(x,f(x))

λn
for some sequences (λn)n∈N ⊂ (0,∞), (xn)n∈N ⊂

RN . Let’s take xn + 1
nv, and λn = 1

n . Then since ∂vf(x) exists, it follows
that

lim
n→∞

f(x+ 1
nv)− f(x)
1
n

= lim
t→0

f(x+ tv)− f(x)

t
= ∂vf(x)

Therefore,

lim
n→∞

(xn, f(xn))− (x, f(x))

λn
= (v, ∂vf(x))

Therefore, we have shown (v, ∂vf(x)) ∈ T(x,fx)f , proving the second in-
clusion.

Remark 2. Note that this also writes as:

T(x,fx)f =
{
(v,Dxf(v)) : v ∈ RN

}
= Dxf

This is suggestive notation! Just imagine what we can do for f : Ω → RM ...

Note that in 2, we only used that ∂vf(x) existed in order to prove the
inclusion ⊃. This leads to the following weaker proposition (which I will call a
corrolary due to the proof already given):

Corrolary 1. if Ω ⊂ RN is open and f : Ω → R only has, for a certain
v ∈ RN , a partial derivative ∂vf(x) at x ∈ Ω, then

(v, ∂vf(x)) ∈ T(x,fx)f

In principle, the tangent cone to the graph of f at the point (x, f(x))
always contains the partial derivatives ∂vf(x) of f , provided that they ex-
ist and provided that Ω is open. In that case, namely, we can approach x
along a straight line, say with a sequence xn = x + v

n , λn = 1
n therefore

limn→∞
f(xn)−f(x)

1
n

= lim t→ 0 f(x+tv)−f(x)
t = ∂vf(x). However:
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(i) If Ω is not open, not all v may be the limit of a sequence x+tnv−x
tn

, that
is, of a sequence (xn)n∈N lying on a straight line.

(ii) In any case, existence of partial derivatives does not give information
about the behaviour of (

f(xn)− f(x)

λn

)
n∈N

for arbitrary sequences (xn)n∈N such that xn → x, (λn)n∈N such that
λn → 0, even if xn−x

λn
converges to some v ∈ Txdom(f). This is because

we have no information about sequences that approach x along arbitrary
curves. This is unless we know that f is differentiable, in which case
we can use Theorem 1.1.

1.2 Characterization of Differentiability by the Tangent
Hyperplane

From the preceding section, we conclude the following characterization of dif-
ferentiability of scalar functions f : Ω → R (which may be easier to work with
than the original definition of ∃L ∈ (RN )∗ : f(y)− f(x)−L(y−x) ∈ o(|y−x|))

Theorem 3. Let x ∈ Ω, Ω ⊂ RN an open set and f : Ω → R. Then f is
differentiable at x if and only if:

(i) f is continuous at x.

(ii) ∀v ∈ RN : ∂vf(x) exists and moreover v 7→ ∂vf(x) is linear.

(iii) T(x,fx)f is a linear space of dimension N .

Proof. That differentiability implies continuity, (i), is a result of ?? given in
Chapter 5. That it implies (ii), is a result of the fact ∂vf(x) = (Dxf)(v). That
it implies (iii), follows from 2 and the fact that the image of a linear map is a
linear space, which is generated by (ei, ∂if(x)), i = 1, ..., N .

The converse is a bit more involved, we can use the characterization given
by 1.1. If we can prove premise 1.1(ii), we are done. Therefore, consider any
v ∈ RN , where the sequence (xn)n∈N in Ω has, together with (λn)n∈N, the
property

xn − x

λn
→ v

Then we need to show f(xn)−f(x)
λn

→ Lv, for some L that is a linear map that
does not depend on our choice of v, (xn)n∈N or (λn)n∈N.

The opposite implication follows as follows: Since the partial derivatives
exist and are linear, we can define a linear map L : RN → R through:

Lv =

N∑
i=1

vi∂if(x)
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We already have

lim
n→∞

f(xn)− f(x)

λn
= Lv

For all straight sequences, where xn = x+ λnv. We now need to show that

lim
n→∞

f(xn)− f(x)− L(xn − x)

|xn − x|
= 0

Holds for any sequence (xn)n∈N, and this does not follow from (i) and (ii) alone.
Using (iii), we know that T(x,fx)f is a linear space of dimension N and

contains a linear space {(v, ∂vf(x)) : v ∈ RN}, which has dimension N . So
we must have T(x,fx)f = L

Let (xn)n∈N be a sequence converging to x such that xn−x
|xn−x| → v. How

to show that f(xk)−f(x)
|xk−x| converges? Urysohn property! Pick any subsequence

k 7→ nk and relabel xk = xnk
, to ease notation. Either, we can pick a further

subsequence
f(xkl

)− f(x)

|xkl
− x|

that converges, or not. Assume this cannot be done. Since we can always

extract a monotone subsequence, this must imply that f(xn)−f(x)
|xn−x| is unbounded,

otherwise we can extract a monotone, bounded subsequence, which would be
convergent in R. Up to a subsequence, we can therefore assume

|f(xk)− f(x)|
|xk − x|

> k

=⇒ |xk − x|
|f(xk)− f(x)|

→ 0

Moreover, using that f(xk)−f(x)
|f(xk)−f(x)| ∈ SN−1, we use Bolzano-Weierstrass to assume

up to a subsequence that

f(xk)− f(x)

|f(xk)− f(x)|
→ w ∈ SN−1

So using µk := |f(xk)− f(x)|, we have

xk → x,
xk − x

µk
→ 0,

f(xk)− f(x)

µk
→ w ̸= 0, since |w| = 1.

Therefore, (0, w) ∈ T(x,fx)f , for some w ̸= 0, which contradicts the assumption
that T(x,fx) = L, since L0 = 0. So we conclude that we can always pick a

further converging subsequence
f(xkl

)−f(x)

|xkl
−x| , that converges to say w, for which

by premise (iii), we have w = Lv, and therefore f(xn)−f(x)
|xkl

−x| → Lv. This means

that 1.1(ii) holds, and by 1.1[(ii) =⇒ (i)], it follows that f is differentiable at x.

6



The following argument for the implication (i),(ii),(iii) =⇒ differentiabil-
ity, is wrong:

By continuity, f(xn) → f(x), so that (xn, f(xn))n∈N converges to (x, f(x))

through the graph f . Therefore, if f(xn)−f(x)
λn

converges to some p ∈ R, this
would imply p ∈ T(x,fx)f . Notice that since the partial derivative exists, we

have that f(xn)−f(x)
λn

indeed converges, and to ∂vf(x). So the only thing left is
to show that these partial derivatives can be ”united” to a linear map L.

For this, consider v = ei, for i = 1, ..., N . Then, we can define a linear map
L : RN → R through

Lv :=

N∑
i=1

vi∂if(x)

, where v =
∑N

i=1 v
iei. This defines a unique linear map since we fix L on

a generating set of RN . It is also well-defined since we fix L on a linearly
independent set of RN . It remains to show that for any sequence (xn)n∈N such

that xn−x
λn

→ v, we have f(xn)−f(x)
λn

→ Lv. We see this, because

f(xn)− f(x)

λn
→ ∂vf(x) =

N∑
i=1

vi∂if(x) by linearity of v 7→ ∂vf(x),

and

N∑
i=1

vi∂if(x) = Lv by definition

Therefore, the premise 1.1(ii) holds, and it follows that f is differentiable at x
with Dxf = L.

The essential mistake is that we assume to have information about f(xn)−f(x)
λn

for arbitrary sequences (xn)n∈N ⊂ Ω: xn → x, (λn)n∈N ⊂ (0, 1): λn → 0, just

because we know limn→ ∞ f(x+tnv)−f(x)
tn

= ∂vf(x) for infinitesimal sequences

tn → 0. It is true that for all v ∈ RN we have ∂vf(x) ∈ T(x,fx)f since Ω is
open, so there is a sequence (xn)n∈N on a straight line with (λn)n∈N such that
we can approximate v, and by continuity of f and the shape of this sequence,

we know limn→ ∞ f(x+tnv)−f(x)
tn

= ∂vf(x). Therefore, T(x,fx)f contains the

linear space {(v, ∂vf(x)) : v ∈ RN} (which is a linear space by linearity of
v 7→ ∂vf(x)), but is may contain more: see Exercise 2 for an example
where a function f continuous at (0, 0) with existing and linear partial
derivatives at (0, 0), has a tangent cone to its graph that is strictly larger than
the linear space spanned by its partials, and is also not differentiable.

And as it turns out, another sufficient condition is for f to be continuous
and T(x,fx)f to be ”non-vertical”. This is clear in one dimension: we want the
tangent line to be of the form {(t, f ′(x)t)}t∈R. In RN × R, this translates to
”T(x,fx)f must be parametrizable with a linear map L”.

Theorem 4. x ∈ Ω ⊂ RN an open set and f : Ω → R. Then f is differen-
tiable with Dxf = L at x if and only if:
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(i) f is continuous at x.

(ii) T(x,fx)f = L for some linear map L ∈ (RN )∗

In other words, if we think about functions as sets, then differentiability
of f just means that f is continuous and its tangent cone is a linear map,
in particular the tangent cone to the graph equals (the graph of) its derivative!

Proof. We already know from proposition 3 if f is differentiable, T(x,f(x))f ={
(v, ∂vf(x)) : v ∈ RN

}
. And from Chapter 5, we know f is continuous.

The converse follows, since
First, the premises of 3 imply differentiability, which in turn implies T(x,fx)f =

Dxf by 2, which proves 4(ii).
Second, the premises of 4 should imply differentiability. Let (xn)n∈N ⊂ RN

(λn)n∈N ⊂ (0,∞) such that xn → xn−x
λn

→ v. By continuity of f , we have
f(xn) → f(x), therefore (xn, f(xn))n∈N is a sequence converging to (x, f(x))

through f , therefore if we can show f(xn)−f(x)
λn

converges, it follows f(xn)−f(x)
λn

→ Lv
by premise 4(ii), and differentiability follows by 1.1[(ii) =⇒ (i)].

But how to show that f(xn)−f(x)
λn

converges? Urysohn property! Pick any
subsequence k 7→ nk and relabel xk = xnk

, λk = λnk
to ease notation. Either,

we can pick a further subsequence

f(xkl
)− f(x)

λkl

that converges, or not. Assume this cannot be done. Since we can always

extract a monotone subsequence, this must imply that f(xn)−f(x)
λn

is unbounded,
otherwise we can extract a monotone, bounded subsequence, which would be
convergent in R. Up to a subsequence, we can therefore assume

|f(xk)− f(x)|
λk

> k

=⇒ |xk − x|
|f(xk)− f(x)|

=
λk

f(xk)− f(x)|
|xk − x|
λk

→ 0 · |v| = 0

Moreover, using that f(xk)−f(x)
|f(xk)−f(x)| ∈ SN−1, we use Bolzano-Weierstrass to assume

up to a subsequence that

f(xk)− f(x)

|f(xk)− f(x)|
→ w ∈ SN−1

So using µk := |f(xk)− f(x)|, we have

xk → x,
xk − x

µk
→ 0,

f(xk)− f(x)

µk
→ w ̸= 0, since |w| = 1.

Therefore, (0, w) ∈ T(x,fx)f , which contradicts the assumption that T(x,fx) = L,
since L0 = 0. So we conclude that we can always pick a further converging
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subsequence
f(xkl

)−f(x)

λkl

, that converges to say w, for which by premise (ii), we

have w = Lv, and therefore f(xn)−f(x)
λn

→ Lv. This means that 1.1(ii) holds,
and by 1.1[(ii) =⇒ (i)], it follows that f is differentiable at x.

2 Homework

Exercise 1 This exercise is about Leibniz’ Integral Rule from Chapter 5. We
apply it to compute a Gaussian integral. Define F : [0,∞) → R, through:

F (x) :=

∫ x

0

e−t2dt

(i) Prove that the limit
lim
x→∞

F (x)

exists and is finite.

(ii) Now, we want to compute it. A first idea would be to use the change of
variabless = t/x (for x > 0), to write:

F (x) =

∫ x

0

e−t2dt = x

∫ 1

0

e−x2t2dt

Now, the integrand is:

g(t, x) = e−x2t2 = −∂x

(
ex

2t2

t2

)
So if we would apply Leibniz’ Integration Rule, we would get∫ 1

0

e−x2t2dt = −∂x
∫ 1

0

e−x2t2

t2
dt

But, the integrand is not defined at x = 0, in other words ϕ(t, x) = e−x2t2

is only defined on any compact interval [ϵ, b] if ϵ > 0.

An idea is to consider ∫ x

ϵ

e−t2dt

And to send ϵ ↓ 0. Explain why this does not work.

(iii) Instead, to overcome the singularity, consider

ϕ(x) :=

∫ 1

0

e−x2(1+t2)

1 + t2
dt
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Prove that
ϕ′(x) = −(F 2(x))′

(iv) Obtain

ϕ(x) =
π

4
− F 2(x)

(v) Prove
lim
x→∞

ϕ(x) = 0

(vi) Conclude

lim
x→∞

F (x) =
π

4

Proof

(i) It suffices to show that F is monotone and bounded. To see that it is
monotone, take x ≤ y and see that

F (y)− F (x) =

∫ y

x

e−t2dt ≥ |x− y| inf
t∈[x,y]

e−t2 ≥ |x− y|e−x2

≥ 0

Therefore
x ≤ y =⇒ F (x) ≤ F (y)

For boundedness, we simply see that:{
0 ≤ e−t2 ≤ e0 = 1 for t ≤ 1

0 ≤ e−t2 ≤ e−t for t ≥ 1

Therefore,

∀x ∈ R : 0 ≤
∫ x

0

e−t2dt ≤
∫ 1

0

1dt+

∫ x

1

e−tdt = 1 + 1− e−x ≤ 2

This means that for any sequence (xn)n∈N with xn → ∞ (i.e. growing
arbitrarily large for n ≥ N , N sufficiently large), we have that (F (xn))n∈N
is bounded and increasing, hence convergent to its supremum. This means
F (x) → supx∈R F (x).

(ii) We don’t get away with puttin ϵ in place of 0, since the lower bound of
the integral will now depend on x in a way that is not defined at s = 0
either; if we let s = t/x, then∫ 1

ϵ

e−t2dt = x

∫ 1

ϵ/x

e−s2x2

ds

This time, if we would like to apply Leibniz’ Integration Rule to the in-
tegrand g(t, x) = e−x2t2 , we would need to apply variant II of the Propo-
sition, since x → a(x) = ϵ/x is a lower bound that depends on x. The
problem is that a is not continuous in an open neighbourhood Ω of 0,
so the rule fails to apply.
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(iii) We apply Leibniz’ Integration rule to the integrand:

ψ(t, x) =
e−x2(1+t2)

1 + t2

This ψ : [0, 1]×Ω → R (where Ω = R is open ) is continuous on the whole
of of its domain, since t 7→ 1 + t2 is a polynomial without zeroes and
(x, t) 7→ e−x2(1+t2) is a composition of the continuous exp-function with
the continuous polynomial −x2(1+t2), so their quotient is also continuous.
Moreover, ϕ(t, ·) is differentiable for all t, and:

∂xψ(t, x) = −2xe−x2(1+t2)

This function is clearly continuous in [0, 1]×R, meaning that we can apply
Leibniz’ Integration Rule at any x in the domain Ω = R:

ϕ′(x) = ∂xϕ(x) =

∫ 1

0

∂x
e−x2(1+t2)

1 + t2
= −2x

∫ 1

0

e−x2(1+t2)dt

If we look at F , the other hand, by the fundamental theorem of calculus,
it is differentiable with F ′(x) = e−x2

, so that by the chain rule, we have
that −(F 2(x)) is differentiable and:

−(F 2(x))′ = −2F (x)F ′(x)

= −2xe−x2

∫ 1

0

e−t2dt

= −2x

∫ 1

0

e−x2(1+t2)dt

= ϕ(x)

Proving the desired equality.

(iv) Since ϕ is differentiable and its derivative ϕ′ e continuous, hence ϕ′ inte-
grable over the compact interval [0, x], we can use the fundamental theo-
rem of calculus to obtain:

ϕ(x) = ϕ(0) +

∫ x

0

ϕ′(s)ds

=

∫ 1

0

dt

1 + t2
−
∫ x

0

(F 2(x))′dx

= arctan(t) |10 −F 2(x)

=
π

4
− 0− F 2(x) =

π

4
− F 2(x)

(v) Fix x ∈ R. For the integrand of ϕ, t 7→ ψ(t, x), notice that it by its dif-
ferentiability and compact domain [0, 1], only has a few candidate points
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where it may assume its maximum (it assumes this by continuity (Weier-
strass)): either in 0, 1 or in a stationary point:

∂t
e−x2(1+t2)

1 + t2
= −2te−x2(1+t2)((t2 + 1)x2 + 1)

(t2 + 1)2
, therefore

∂tϕ(t, x) = 0 =⇒ t = 0 or t2 = −1− 1

x2

This means that only 0 and 1 are candidate extrema, and we obtain

ϕ(0, x) = e−x2

, ϕ(1, x) =
1

2
e−2x2

sup
t∈[0,1]

∣∣∣∣∣e−x2(1+t2)

1 + t2
− 0

∣∣∣∣∣ = max

{
e−x2

,
1

2
e−2x2

}
→ 0 as x→ ∞

This means that the integrand goes to 0 : [0, 1] → R; t 7→ 0 uniformly,
as n → ∞ for any sequence (xn)n∈N such that xn → ∞. If a sequence
of Riemann-integrable functions defined on a compact interval uniformly
converge to a limit function, we can exchange limit and integrand, and
therefore we conclude

lim
x→∞

ϕ(x) = lim
x→∞

∈1
0

e−x2(1+t2)

1 + t2
dt

=

∫ 1

0

lim
x→∞

(
e−x2(1+t2)

1 + t2

)
dt

=

∫ 1

0

0dt = 0

(v) Since we also know F (x) → y for some y ∈ R, as x→ ∞, we can conclude,
since F (x) is monotone and positive, that F (x) =

√
F 2(x), and therefore:

F (x) =

√
π

4
− ϕ(x)

And by continuity of s 7→
√
s, and the established fact ((i)) that limx→∞ F (x)

exists, we conclude:

lim
x→∞

F (x) = lim
x→∞

√
π

4
− ϕ(x) =

√
π

4
− lim

x→∞
ϕ(x) =

√
π

4
=

1

2

√
π
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Exercise 2 Consider the function f : (−1, 1)2 → R defined as

f(x, y) :=

{
x y = x2

0 else

Then:

(i) Prove that the tangent cone at the graph of f at the origin is the set

{(x, y, 0) : (x, y) ∈ R2} ∪ {(x, 0, x) : x ∈ R};

(ii) Show that this set is not a linear space.

Proof

(i) We have, for each v ∈ R2, (v, ∂vf(x)) ∈ T(x,fx)f By the (second?) propo-
sition above. Note that

∂vf(x) = lim
t→0

f((0, 0) + tv)− f(0, 0)

t

And this limit exists, since f(x, y) ̸= 0 only on a non-straight curve
through the origin, so along any line, f(x, y) ̸= 0 at most in one point,
and then it will remain 0. Therefore

f((0, 0) + tv)− f(x)

t
=

0− 0

t
= 0

eventually, so:

for all v ∈ R2 : (v, 0) ∈ T((0,0),f(0,0))f

Hence, all vectors with third component equal to 0 are tangent to the
graph.

There is only one case left to consider: can third component of a tan-
gent vector be nonzero? This is only possible if we have a sequence
(xn)n∈N converging to (0, 0), with f(xn) convergent, and N ∈ N such
that ∀n ≥ N : f(xn) ̸= 0 (and we have an infinitesimal sequence (λn)n∈N

with (xn,f(xn)−(0,0,0)
λn

→ v ̸= 0). This can only mean that ∀n ≥ N we have

xn = (pn, p
2
n), since f(x) ̸= 0 only if the second component is the square

of the first.

Then, we have pn → 0, because xn → 0, and
(pn,p

2
n)

λn
→ w for some

w ∈ R2. This means that pn/λn → w1 finite, but this implies p2n/λn =
pn · pn/λn → 0 · w1 = 0 because of the product rule for limits. Moreover,
f(xn)/λn = pnλn → w1 because f(pn, p

2
n) = pn. This means that any

tangent vector that is not of the form (v, ∂vf(0, 0)) has to be of the form
(x, 0, x). But, we have not shown yet that any x ∈ R is possible for this.

13



This is, however, true: we can, for example, take pn = x
n and λn = 1

n , for
any x ∈ R, then (pn, p

2
n) → (0, 0),

f(pn, p
2
n)

λn
=
x/n

1/n
→ x, hence

(pn, p
2
n, f(pn, p

2
n)− (0, 0, f(0, 0))

λn
→ (x, 0, x)

For any x ∈ R there is such therefore such a tangent vector.

Notice that we have exhausted all possibilities for tangent vectors (v, w) ∈
R2 × R by this case distinction on w. Therefore, we have also shown the
other inclusion:

{(x, y, 0) : (x, y) ∈ R2} ∪ {(x, 0, x) : x ∈ R} ⊂ T(x,fx)f

(ii) (1, 1, 0) and (1, 0, 1) are in this set, but (1, 1, 0) + (1, 0, 1) = (2, 1, 1) is not
of the required form. So the set is not closed under +, and therefore not
a linear subspace.

Exercise 3 Let Ω ⊂ RN be an open set, and let a ∈ Ω. Let f : Ω → R be
differentiable at a. Prove that

T(a,f(a))f =
{
(v, ∂vf(a)) : v ∈ RN

}
Proof Refer to Proposition 2.
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