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1 Differentiability

1.1 Definition of differentiability and the differential

Recall the definition of differentiability in R → R:

Definition 1. Let Ω ⊂ R open, then f : Ω → R is called differentiable at a
if

L = lim
x→a

f(x)− f(a)

x− a

exists in R.

In the scalar case, L is simply a scalar. It is also a linear map L : R → R
(namely, scalar multiplication with L). This concept is necessary to generalize
differentiation to arbitrary normed vector spaces. We will discuss it for RN :

Definition 2. Let Ω ⊂ RM open, f : Ω → RN is called differentiable at a if
there is an L ∈ L(RM ,RN ) such that:

lim
x→a

f(x)− (f(a) + L(x− a))

|x− a|
= 0

Notation 1. In Landau’s notation, we say f = g + o(h) for functions f, g, h :
R → R, if

lim
t→0

f(t)− g(t)

h(t)
= 0

Using this notation, differentiability writes as

f(x) = f(a) + L(x− a) + o(|x− a|)

Notation 2. We denote the punctured ball B0
r (x) around x ∈ X with radius

r > to be the set
B0

r (x) = {y ∈ X : 0 < d(x, y) < r}

Proposition 1. If L exists, it is unique.
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Proof. Assume for a contradiction that there are two different linear maps, T
and L. This implies that there is an ϵ > 0 and (xn)n∈N is a sequence such that

∀n ∈ N : xn ∈ B0
1
n
(a) yet |L(xn − a)− T (xn − a)| ≥ ϵ

Clearly, xn → a as n→ ∞. Moreover, it implies:

∀n ∈ N :
|L(xn − a)− T (xn − a)|

|xn − a|
≥ ϵn

Now, since∣∣∣∣f(xn)− f(a)− L(xn − a)

|xn − a|
− f(xn)− f(a)− T (xn − a)

|xn − a|

∣∣∣∣ = ∣∣∣∣ |L(xn − a)− T (xn − a)|
|xn − a|

∣∣∣∣
It follows that this sequence is unbounded. On the other hand, by differentia-

bility, both f(xn)−f(a)−L(xn−a)
|xn−a| and f(xn)−f(a)−T (xn−a)

|xn−a| converge to 0, so their

sum sequence should converge and thus be bounded. A contradiction.

Definition 3. We call the unique linear map the differential of f at a. No-
tation: Daf = L

Proposition 2. If f : Ω → RN is differentiable at x, then there is an M > 0
and δ > 0 such that

∀y ∈ Bδ(x) : |f(x)− f(y)| ≤M |x− y|

In particular, f is Lipschitz continuous ( =⇒ uniformly continuous) in
an open neighbourhood Bδ(a).

Proposition 3. For Ω ⊂ RN open and a ∈ Ω, λ ∈ R and f, g : Ω → R,
differentiable at a, we have:

• f + λg is differentiable at a and Da(f + λg) = Daf + λDag

• f · g is differentiable at a and Da(f · g) = f ·Dag + g ·Daf

Note that here, the dimension of the target space is N = 1.

Proof. • These equalities follow because we can interchange limits with lin-
ear combinations and products, provided the individual terms form con-
vergent sequences:

lim
x→a

f(x) + λg(x)− f(a)− λg(a)− (Daf)(x− a)− λ(Dag)(x− a)

|x− a|
=

lim
x→a

f(x)− f(a)− (Daf)(x− a)

|x− a|
+ λ · lim

x→a

g(x)− g(a)− (Dag)(x− a)−
|x− a|

=

0 + λ · 0 = 0
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• Here, we not only need the lemma that we can take linear combinations
of limiting sequences, but also that f and g are continuous (Proposition
2). Also, assume without loss of gne

f(x)g(x)− f(a)g(a)− g(a)(Daf)(x− a)− f(a)(Dag)(x− a)

|x− a|
=

f(x)g(x) + f(x)g(a)− f(x)g(a)− f(a)g(a)− f(a)(Daf)(x− a)− g(a)(Dag)(x− a)

|x− a|
=

f(x)g(x) + f(x)g(a)− f(x)g(a)− f(a)g(a)− f(a)(Daf)(x− a)− g(a)(Dag)(x− a)

|x− a|
=

f(x)g(x)− f(x)g(a)− f(x)(Daf)(x− a)

|x− a|
− g(a)

f(x)− f(a)− (Daf)(x− a)

|x− a|

By differentiability of f ,

lim
x→a

f(x)− f(a)− (Daf)(x− a)

|x− a|
= 0

So it suffices to show, that for

∆(r) := sup
x∈B0

r(a)

|f(x)g(x)− f(x)g(a)− f(x)(Daf)(x− a)|
|x− a|

, we have lim
r→0

∆(r) = 0

With Proposition 2, we can already say that for r < δ, it holds

|f(x)− f(a)| ≤M |x− a|, therefore

∆(r) ≤ sup
x∈B0

r(a)

(
|f(a)g(x)− f(a)g(a)− f(a)(Daf)(x− a)|

|x− a|

)
+ sup

x∈B0
r(a)

(M |g(x)− g(a)|)

1.2 Chain Rule

Proposition 4. Let Ω ⊂ RN and U ⊂ Rk be open, f : Ω → RM differentiable
at a ∈ Ω and φ : U → Rk differentiable at f(a) ∈ U . Then φ ◦ f : Ω → R is
differentiable at a and

Da(φ ◦ f) = Df(a)φ ◦Daf

Note that the right-hand-side of the equality is indeed a linear map, as it is the
composition of two linear maps.

Remark 1. This means that ∀x ∈ Ω,

φ ◦ f(x) = φ ◦ f(a) + (Df(a)φ ◦Daf)(x− a) = o(|x− a|)
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1.3 Gradient, Partial Derivatives

Notation 3. For the unfamiliar reader, if V is a K-vector space we will make
use the dual vector space, denoted as V ∗ = L(V,K).

Definition 4. For a linear map L ∈ V ∗, there is a unique w ∈ V such that

L(v) = ⟨w, v⟩

If the linear map is Dxf , where f : Ω → R is differentiable, we call this w the
gradient and denote it as ∇f(x)

Remark 2. By linearity of Dxf in f , and bilinearity of the inner product, we
also have this for ∇f(x) as a vector:

∇(λf + g)(x) = λ∇f(x) +∇g(x)
∇(f · g)(x) = f(x) · ∇g(x) + g(x) · ∇f(x)

Definition 5. For f : Ω → R, we say that f has directional derivatives at x ∈ Ω
in the direction v if

lim
t→0

f(x+ tv)− f(x)

t

exists and is finite. We denote it ∂vf(x)

Remark 3. Like with linear continuity, the existence of directional deriva-
tives is a statement about the behaviour of functions along straight lines. In
particular, the existence of partial derivatives of f at x is not at all sufficient
for differentiability at x, because f can still behave badly along arbitrary curves.
Consider:

f : R2 → R,

f(x, y) =

{
x|y|√
x2+y2

(x, y) ̸= 0

0 (x, y) = 0

It has directional derivatives at the origin along every line {tv : t ∈ R}, yet
v 7→ ∂vf(0, 0) is not linear, while this should be the case according to Proposition
9.

Proposition 5. Lagrange’s Mean Value Theorem
Let f : Ω → R be a function and x, y ∈ Ω. Let v = y − x and assume

S = {x + tv : t ∈ [0, 1]} ⊂ Ω, and that f has directional derivatives (does
not need to be differentiable) at all the points of S. Then:

f(y)− f(x) = ∂vf(z)

or also
f(y)− f(x) = ⟨∇f(z), y − x⟩

for some z ∈ S
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A more general form of the theorem requires us to define a C1(Ω) curve:

Definition 6. A function f : Ω → RM is called of class Cr(Ω) if it has partial
derivatives up to and including order r in directions of all basis vectors e1, .., eN
at all x ∈ Ω and these partial derivatives x 7→ ∂αf(x) are continuous with
respect to x.

Remark 4. We then often denote ∂eif simply as ∂i. (Like in quantum me-
chanics, where one often just denotes the n-th eigenstate ψn as |n⟩.

Proposition 6. f ∈ C1(Ω) and γ : [0, 1] → Ω s.t. γi ∈ C1([0, 1]). Then

f(y)− f(x) =

∫ 1

0

(Dγ(t)f)(γ
′(t))dt

As a corollary we have the estimate for straight line segments S = x+ [0, 1]v:

Proposition 7.
|f(y)− f(x)| ≤ |x− y| sup

z∈S
|∇f(z)|

Proposition 8. Let Ω ⊂ RM be open and f : Ω → RM , where we write
f = (f1, .., fM ).

Then f is differentiable at x ∈ Ω if and only if each of its components
fi : Ω → R is differentiable in x ∈ Ω.

Now is the time to investigate the relation between differentiability and
the existence and regularity of partial derivatives. First, we discuss what
differentiability implies for the partial derivatives, and then we discuss that
continuous partial derivatives imply differentiability.

Proposition 9. Let f : Ω → R, where Ω ⊂ RN is open. If f is differentiable
at x ∈ Ω, then

(i) f has directional derivatives at x in every direction v ∈ RN\{0}

(ii) ∂vf(x) = (Dxf)(v), or equivalently (by definition of ∇f(x) through iden-
tification by duality)

(iii) ∂vf(x) = ⟨∇f(x), v⟩

(iv) v 7→ ∂vf(x) is linear.

In particular, we can conclude that if v 7→ ∂vf(x) is not linear at some
x ∈ Ω , then f is not differentiable at x.

Remark 5. However, existence of partial derivatives in all directions v and
their linearity in v is not sufficient either: consider the function f defined as:

f(x, y) =

{
1 if y = x2 ̸= 0

0 else
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Then f has directional derivatives in all directions at the origin, since

f(tv1, tv2)− f(0, 0)

t
=

0− 0

t
= 0, ∀t ̸= 0

And in particular, the directional derivatives are all 0, hence linear in v. Yet f
is not even continuous at the origin!

In general, we have the strict inclusion

partial derivatives ⊃ linear partial derivatives ⊃ differentiable ⊃ of class C1

The final ⊃ is called the Total Differential theorem

Theorem 1. Total differential theorem
Let f : Ω → R be open and let f ∈ C1(Ω). Then, f is differentiable at

each point of Ω and moreover, we have:

∀z ∈ Ω : lim
x ̸=y→z

f(y)− f(x)−Dzf(y − x)

|x− y|
= 0

Note that we could also have used the gradient notation, which is equivalent
by definition:

∀z ∈ Ω : lim
x ̸=y→z

f(y)− f(x)− ⟨∇f(z), (y − x)⟩
|x− y|

= 0

Moreover, the gradient can be directly computed as

∇f(x) = (∂1f(x), ..., ∂Nf(x))

So this theorem is really about showing the following:

∀z ∈ Ω : lim
x ̸=y→z

f(y)− f(x)−
∑N

i=1 ∂if(z) · (yi − xi)

|x− y|
= 0

Definition 7. Ifr f : Ω → RM is differentiable at x ∈ Ω, where Ω ⊂ RM is
open, and we denote e1, ..., eN the standard basis vectors of RN , we define the
matrix isomorphism

mat : L(RN ,RM ) → RM×N

Which identifies a linear map L : RN → RM with a matrix M ∈ RM×N

where
Mij = ⟨ei, Lej⟩

With this, we can define the Jacobi matrix via mat as follows:

Jxf = mat(Dxf)

Proposition 10.

Jxf =


∇f1(x)T
∇f2(x)T

...
∇fN (x)T


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Definition 8. for a ∈ RN and b ∈ RN , define the tensor product (here:
simply matrix outer product) a⊗ b as the M ×N matrix:

(a⊗ b)ij = aibj

Remark 6. In general, a rank (r, s) tensor is a multilinear form T : (V ∗)r×
V s → K where V is an K-vector space and V ∗ is its dual vector space. for S
another tensor of rank (t, u), we define its tensor product T⊗S as the unique
rank r + t, s+ u) tensor such that:

(T ⊗ S)(v1..vr, w1..wt, x1..xs, y1..yu) = T (v1..vr, x1..xs)S(w
1..wt, y1..yu)

Proposition 11. Product rule for scalar multiplication
For φ : RN → R, f : RN → RM differentiable functions at a point x ∈ RN ,

we have that

φ · f : RN → RM , defined as x 7→ φ(x) · f(x)

is differentiable at x and:

Jx(φ · f) = ∇φ(x)⊗ f + φ · (Jxf)

1.4 Leibniz’ integration theorem

Proposition 12. Leibniz’ Integral Rule I
For ψ : [a, b]× Ω → R a continuous function where Ω ⊂ RN is open:

(i) The function ϕ : Ω → R defined as

ψ(x) =

∫ b

a

ψ(t, x)dt

is continuous.

(ii) If v ∈ RN\{0} and ∂vψ is continuous on [a, b] × Ω, then the Leibniz’
formula holds:

∂vϕ(x) =

∫ b

a

∂vψ(t, x)dt

Proposition 13. Leibniz’ Integral Rule II
If a, b ∈ C0(Ω; [c, d]) and ψ : [c, d]×Ω → R is a continuous function, where

Ω ⊂ RN is open.

(iii) Then ϕ : Ω → R, defined through:

ϕ(x) =

∫ b(x)

a(x)

ψ(t, x)dt

is continuous.
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(iv) Moreover, if a, b ∈ C1(Ω; [c, d]) and for some v ∈ RN\{0}, we have that
∂vϕ is continuous on [c, d]× Ω, then

∂vϕ(x) =

∫ b(x)

a(x)

∂vψ(t, x)dt

+ ψ(b(x), x)∂vb(x)

− ψ(a(x), x)∂va(x)

Proof. The proof is for the Riemann integral. There is a similar theorem
for the Lebesgue integral, but it requires a definition limiting theorems for the
Lebesgue integral, which will follow in Chapter 11, 12 & 13.

(i) Let xn → x, for (xn)n∈N in Ω and fix ϵ > 0. We need to prove there is a
N ∈ N with, up to a constant factor,

∀n ≥ N : |ϕ(xn)− ϕ(x)| < ϵ

Since Ω is open, find a R > 0 with BR(x) ⊂ Ω and conclude that ψ is
uniformly continuous on [a, b] × BR(x), by compactness of this set. This
means that there exists a δ > 0 with:

∀u, v ∈ [a, b], ∀y, z ∈ BR(x) : |ψ(u, y)− ψ(v, z)| < ϵ

Therefore, let N ∈ N be such that ∀n ≥ N : |xn − x| < δ. Then, for all
n ≥ N :

|ϕ(xn)− ϕ(x)| =

∣∣∣∣∣
∫ b

a

[ψ(t, xn)− ψ(t, x)]dt

∣∣∣∣∣ ≤
∫ b

a

|ψ(t, xn)− ψ(t, x)|dt

≤ |a− b| · sup
t∈[a,b]y∈Bδ(x)

|ψ(t, y)− ψ(t, x)|

< δ|a− b|

(ii) We need to show

lim
t→0

ϕ(x)− ϕ(x+ hv)

h
=

∫ b

a

∂vψ(t, x)dt

By openness of Ω, for |h| sufficiently small, we have x + hv ∈ Ω, so we reason
with that. On the compact neighbourhood [a, b]×Br(x), we have that ∂vϕ(t, v)
is uniformly continuous, which will be useful: for all ϵ > 0 there is a δ > 0
with

∀s, t ∈ [a, b],∀h, l such that x+ hv, x+ lv ∈ Ω :

|s− t| < δ, |h− l| < δ

|v|
=⇒ |ϕ(t, x+ hv)− ϕ(s, x+ lv)| < ϵ
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ϕ(x+ hv)− ϕ(x)

h
=

1

h

∫ b

a

[ψ(t, x+ hv)− ψ(t, x)]dt

By Lagrange’s Mean Value Theorem, applied to l 7→ ϕ(t, x + lhv), [0, 1] → R,
there exists, for each t ∈ [a, b], h as above, a λt ∈ [0, 1] such that

ψ(t, x+ hv)− ψ(t, x) = h · (∂vψ)(t, x+ λthv)

Therefore, we rewrite:

|ψ(t, x+ hv)− ψ(t, x)− h∂vψ(t, x)| = |h · (∂vψ)(t, x+ λthv)− h · ∂vψ(t, x)|
= |h||∂vψ(t, x+ λthv)− ∂vψ(t, x)| ≤ ϵ|h|

Namely, the latter equality holds for sufficiently small |h| < δ. This is sufficient
to derive the required approximation: for |h| < δ, we have:

∣∣∣∣∣ϕ(x+ hv)− ϕ(x)

h
−
∫ b

a

∂vϕ(t, x)dt

∣∣∣∣∣ =
∣∣∣∣∣ 1h

∫ b

a

[ψ(t, x+ hv)− ψ(t, x)− h∂vϕ(t, x)]dt

∣∣∣∣∣
≤ 1

|h|
|a− b| sup

t∈[a,b],|h|<δ

[ψ(t, x+ hv)− ψ(t, x)− h∂vϕ(t, x)]

≤ |a− b| |h|
|h|
ϵ = ϵ|a− b|

This was to be shown.

1.5 Higher order differentiability and Taylor expansion

Definition 9. N ∈ N. An N -multi-index α is an element of NN . For this
element, we define:

|α| :=
N∑
i=1

αi α! =

k∏
i=1

αi!

Moreover, for x ∈ RN , we define

xα :=

N∏
i=1

xαi
i

Definition 10. For k ∈ N, Ω ⊂ RN open. f ∈ Ck(Ω,RN ). α ∈ NN with
|α| ≤ k. Then we define

∂αf(x) := ∂α1
xi
..∂αN

xN
f(x)

where we define ∂αi
xi
g(x) := ∂xi

..∂xi
h(x), i.e. αi times.
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Theorem 2. Taylor Series with Peano Remainder
Let k ∈ N, and Ω ⊂ RN open, and fix x ∈ Ω. Assume that ∂αf(x) exists

for all α ∈ NN with |α| ≤ k.
Then fix x, y ∈ Ω and assume that the straight line segment S = x+ [0, 1](y − x)

joining them is contained in Ω. Then, the following approximation holds:

f(y) =
∑

α∈NN :|α|≤k−1

1

α!
∂αf(x)(y − x)α + o(|y − x|k)

Theorem 3. Taylor Series with Integral Remainder
k ∈ N, Ω ⊂ RN open, x ∈ Ω fixed. Assume that ∂αf(x) exists for all α ∈ NN

with |α| ≤ k + 1.
Then fix x, y ∈ Ω and assume that the line segment S = x + [0, 1](y − x)

joining them is contained in Ω. The following approximation holds:

f(y) =
∑

α∈NN :|α|≤k

1

α!
∂αf(x)(y − x)α +Rk(x, y)

Where the remainder term Rk(x, y) satisfies:

Rk(x, y) =
∑

α∈NN :|α|=k+1

(y − x)α

α!

∫ 1

0

(k + 1)(1− t)k∂αf(x+ t(y − x))dt

Remark 7. For N = 1, this gives the familiar Lagrange theorem with integral
remainder:

f(y) =

k∑
i=0

1

i!
f (i)(x)(y − x)i +Rk(x, y)

where

Rk(x, y) =
(y − x)k+1

(k + 1)!

∫ 1

0

(k + 1)(1− t)kf (k+1)(x+ t(y − x))dt

=
(y − x)k+1

(k + 1)!

∫ y

x

(k + 1)

(
1− u− x

y − x

)k

f (k+1)(u)

(
u− x

y − x

)
du

=
(y − x)k+1

(k + 1)!

∫ y

x

(k + 1)

(
y − u

y − x

)k (
u− x

y − x

)
f (k+1)(u)du

=
1

k!

∫ y

x

(y − u)
k

(
u− x

y − x

)
f (k+1)(u)du

Definition 11. If a function f : Ω → R with Ω ⊂ RN is of C∞(Ω), then its
Taylor series T (f)(a) at a ∈ Ω is defined as:

T (f)(a)(x) :=

∞∑
k=0

∑
α∈NN :|α|=k

1

α!
∂αf(a)(x− a)α
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Note: there is no natural order in which to enumerate the terms (x− a)α,
and therefore, we adopt no ordering convention, This means that this series is
only defined well if it converges absolutely (in that case, permutations of the
terms do not change the convergence properties); moreover, not every C∞(Ω)-
function equals its Taylor series. We call function f ∈ C∞(Ω) analytic at
a ∈ Ω if that is the case:

T (f)(a) = f

Example 1. Consider f : R → R, defined through

f(x) :=

{
e−

1
x2 x > 0

0 x ≤ 0
=⇒ f (n)(x) =


2 ·

(∑n+2
k=3

(−1)k

xk

)
e−

1
x2 x > 0

0 x < 0

0 x = 0

This writes as:

f (n)(x) =

{
2 ·

(∑n+2
k=3

(−1)k

xk

)
f(x) x ̸= 0

0 x = 0

Which is clearly continuous, also at the origin as f → 0 faster than any poly-
nomial. However, at a = 0, the Taylor-series is 0, which is not equal to f in
any open neighbourhood of 0, let alone at R.

2 Homework

Exercise 1 Consider the function f : R2 → R defined as

f(x, y) :=

{
x|y|√
x2+y2

(x, y) ̸= (0, 0)

0 (x, y) = (0, 0)

Prove that:

(i) f has directional derivative in all directions at the origin;

(ii) The map
v 7→ ∂vf(0, 0)

is not linear. In particular, prove that f is not differentiable at the origin.

Proof

(i) let v = (vx, vy) ∈ R2\{0}. Then

f((0, 0) + t(vx, vy))− f(0, 0)

t
=

t|t|vx|vy|

t|t|
√
v2x + v2y
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And this is a constant for any t, hence goes to
vx|vy|√
v2
x+v2

y

as t→ 0. So partial

derivatives exist in all directions and are calculated to be:

∂vf(0, 0) =
vx|vy|√
v2x + v2y

(ii) The map

v 7→ ∂vf(0, 0) =
vx|vy|√
v2x + v2y

is clearly not linear: ∂(0,1)f(0, 0) = 0 ∂(1,0)f(0, 0) = 0 but (1, 1) =

(0, 1),+(1, 0), yet ∂(1,1)f(0, 0)1/
√
2 ̸= 0+0 = ∂(0,1)f(0, 0)+∂(1,0)f(0, 0) In

particular, we see f is not differentiable at the origin, since then it follows
∂vf(0, 0) = ⟨∇f(0, 0), v⟩, which would be linear in v.

Exercise 2 In this exercise we want to compute the derivative of the determi-
nant. We will do that by seeing the determinant as a multilinear map of the
columns. Since, recall, the determinant is the unique mapping L : RN×N → R
that is alternating, N-linear on the columns (rows), and has LId = 1. We
will only make use of the second property, and maybe the third.

(i) Consider an N -linear map L : (RN )N → R. Namely, a map such that
for all i ∈ {1, ..., N}, all V = (v1, ..., vn) ∈ (RN )N , all w ∈ RN , and all
λ ∈ R it holds

L(v1, ..., vi + λw, ..., vN ) = L(v1, ..., vi, ..., vN ) + λL(v1, ..., w, ..., vN )

. Fix V = (v1, ..., vN ) and W = (w1, ..., wN ), where vi, wi ∈ RN for each
i = 1, ..., N . Compute the directional derivative of L at V in the
direction W . Namely, compute

lim
t→0

L(V + tW )− L(V )

t
= lim

t→0

L(v1 + tw1, ..., vN + twN )− L(v1, ..., vN )

t

Solution

(i) We will denote the matrix arising when the i-th column of V is replaced by
the i-th column of W , i.e. (v1, ...vi−1, wi, vi+1, ..., vN ), with V iW . With
this, we prove by induction that

∂WL(V ) =

N∑
i=1

L(V iW )

Induction Basis: for N = 1, L is just a linear map. L not only has partial
derivatives, but even a total derivative, as can be seen from the fact that

lim
x→v

L(x)− L(v)− T (x− v)

|x− v|
= 0 trivially holds for T = L
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From this, we can conclude DvL = L, and therefore ∂wL(v) = Lw =
L(V 1W ) for V = (v), W = (w).

Induction Hypothesis: suppose that for n−1-linear maps L : (RN )n−1 → R
we have the result that for any two sequences of column vectors V =
(v1, ..., vn−1), W = (w1, ..., wn), the partial derivative ∂WL(V ) exists and
equals

∑n
i=1 L(V

iW ).

Induction Step Then, let L : (RN )n → R. Consider, for t ̸= 0,

L(v1 + tw1, ..., vn + twn)− L(v1, ..., vn)

t

We use linearity in the N -th component to rewrite this as

L(v1 + tw1, ..., vn−1 + twn−1, vn) + tL(v1 + tw1, ..., vn−1 + twn−1, wn)− L(v1, ..., vn)

t

=
L(v1 + tw1, ..., vn−1 + twn−1, vn)− L(v1, ..., vn)

t
+ L(v1 + tw1, ..., vn−1 + twn−1, wn)

Next, define L̃ : (RN )n−1 as L̃(x1, ..., xn−1) := L(x1, ..., xn−1, vn). This is
a n− 1-linear map, so the induction hypothesis holds for this map; what
is more, we can substitute it everywhere where L is given vn as its n-th
argument:

L(v1 + tw1, ..., vn + twn)− L(v1, ..., vn)

t

=
L̃(v1 + tw1, ..., vn−1 + twn−1)− L̃(v1, ..., vn−1)

t
+ L(v1 + tw1, ..., vn−1 + twn−1, wn)

Now note that in the lower expression, we can take two limits separately:
by the induction hypothesis,

lim
t→0

L̃(v1 + tw1, ..., vn−1 + twn−1)− L̃(v1, ..., vn−1)

t
=

n−1∑
i=1

L(V iN)

While, by continuity of linear maps,

lim
t→0

L(v1 + tw1, ..., vn−1 + twn−1, wn) = L(v1, ..., vn−1, wn) = L(V nW )

Since sums of limits equal limits of sums, we discover that

lim
t→0

L(v1 + tw1, ..., vN + twN )− L(v1, ..., vN )

t
=

indeed exists, and equals

lim
t→0

L̃(v1 + tw1, ..., vn−1 + twn−1)− L̃(v1, ..., vn−1)

t

+ lim
t→0

L(v1 + tw1, ..., vn−1 + twn−1, wn) =

n−1∑
i=1

L(V iW ) + L(V nW ) =

n∑
i=1

L(V iW )
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This completes the induction step and thereby the proof. To repeat, the
partial derivative ∂WL(V ) exists and equals

∑n
i=1 L(V

iW ), for L an N -
linear map where N ≥ 1.

(ii) We now use that the determinant on N × N -matices is N -linear on the

columns. We use this to compute ∂B det(A) = limt→0
det(A+tB)−det(A)

t .

This equals, by (i),
∑N

i=1 det(A
iB). This is the first part of the proof.

Next, taking A = I, we can write:

lim
t→0

det(I + tB)− det(I)

t
=

N∑
i=1

det(IiB) = lim
t→0

t
∑N

i=1 det(I
iB)

t
,

therefore, subtracting the right limit from the left (using additivity of
limits) and using det(I) = 1:

lim
t→0

det(I + tB)− 1− t
∑N

i=1 det(I
iB)

t
= 0, therefore, by definition of o :

det(I + tB) = 1 + t

N∑
i=1

det(IiB) + o(t)

So if we can show
∑N

i=1 det(I
iB) = trace(B), we are done.

Let’s calculate det(IiB) by using the Laplace expansion to the i-th row:

det(M) =
∑N

j=1(−1)i+jMij det(M̃ij), where M̃ij is the N − 1 × N − 1-
matrix arising from M by deletion of the i-th row and j-th column. If we
apply this to row i of IiB, we notice that all elements (IiB)ij ̸= 0 if and
only if i = j, in which case the element is (IiB)ii = Bii, and deletion of
column i and row i will leave the N − 1 × N − 1 identity matrix, which
has determinant 1.

Hence,

det(IiB) = det(M) =

N∑
j=1

(−1)i+j(IiB)ij det( ˜(IiB)ij)

= (−1)i+iBii det(IN−1) = Bii

. Therefore,
N∑
i=1

det(IiB) =

N∑
i=1

Bii = trace(B)

, and we are done.

Exercise 3 Let f : Ω → R be a function that is differentiable at all x ∈ Ω.
Assume that Ω is an open connected set. Namely, for each x, y ∈ Ω it is possible
to find a curve

γ : [0, 1] → Ω

with γ ∈ C1([0, 1];RN ), such that γ(0) = x, and γ(1) = y. Assume that
df(x) = 0 for all x ∈ Ω Prove that f is constant
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Proof Fix arbitrary x, y ∈ Ω. It suffices to show that f(x) = f(y). To this
end, consider a γ ∈ C1([0, 1];RN ) with γ(0) = x, γ(1) = y. By Lagrange’s Mean
Value Theorem, we have:

f(y)− f(x) =

∫ 1

0

⟨∇f(γ(t), γ′(t)⟩dt

Since γ(t) ∈ Ω for all ∈ [0, 1], and df(x) = 0 for all x ∈ Ω, it follows
∇f(γ(t)) = 0 for all t ∈ [0, 1]. Therefore:

f(y)− f(x) =

∫ 1

0

⟨0, γ′(t)⟩dt =
∫ 1

0

0dt = 0

Hence f(y) = f(x), as was to be shown.
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