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1 Spaces of continuous functions

Definition 1. For (X, dX), (Y, dY ) metric spaces, define the space of bounded
functions X → Y :

B(X,Y ) = {f : X → Y : diam(f(X)) < ∞}

Notation 1. We will use the shorthand: B(X) := B(X,R)

Note that f ∈ B(X,Y ) if and only if one of the following holds:

∀y ∈ Y : ∃R > 0 :f(X) ⊂ BR(y)

∃y ∈ Y : ∃R > 0 :f(X) ⊂ BR(y)

Definition 2. We can equip B(X,Y ) with the uniform metric:

d∞(f, g) = sup
x∈X

dY (f(x), g(x))

Lemma 1. B(X,Y ) with d∞ is closed.

Proof. Let fn → f with fn ∈ B(X,Y ). Like in Chapter 3, we argue with the
following triangle inequality: for any x, y ∈ X,

dY (f(x), f(y)) ≤ dY (fn(x), f(x)) + dY (fn(y), f(y)) + dY (fn(x), fn(y))

We can bound dY (fn(x), f(y)) and dY (fn(y), f(y)) by 1 if we let n ≥ N1, and
we know by fn ∈ B(X,Y ) that dY (fn(x), fn(y)) is bounded. So we have a
bound for the right hand side, namely

supn ∈ Ndiam(f(X)) + 2

Therefore, conclude that f ∈ B(X,Y ).

Lemma 2. If Y is complete, then B(X,Y ) with d∞ is complete. The con-
verse is also true: if Y is not complete, then B(X,Y ) is not complete either
(consider a sequence of constant functions fn = yn where (yn)n∈N ⊂ Y is
Cauchy but not convergent).
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Proof. Let (fn)n∈N be Cauchy. As a consequence, for every x ∈ X,

(fn(x))n∈N ⊂ Y

is Caucy, and by completeness of Y , this sequence has a limit. Define f : X → Y
through

f(x) := lim
n→∞

fn(x), x ∈ X

Left to show is that f is continuous and that fn → f uniformly. The former
follows from the latter. To show the first, we argue by continuity of the norm,
that for any z ∈ X:

|f(z)− fn(z)| = lim
m→∞

|fm(z)− fn(z)|

And |fm(z) − fn(z)| < ϵ, ∀z ∈ X, if we let m,n ≥ Nϵ. Therefore, if n ≥ Nϵ,
then

sup
x∈X

|f(x)− fn(x)| = sup
x∈X

lim
m→∞

|fm(x)− fn(x)| ≤ sup
x∈X

ϵ ≤ ϵ

So we conclude |f(x) − fn(x)|C0 ≤ ϵ for all n ≥ Nϵ. This implies the uniform
convergence.

Definition 3. For (X, dX), (Y, dY ) metric spaces, define:

C0(X,Y ) = {f : X → Y : f continuous}
C0

b (X,Y ) = C0(X,Y ) ∩B(X,Y )

Remark 1. If X is compact, we have C0
b = C0 since continuous functions

assume a minimum and a maximum on a compact set.

Lemma 3. C0(X,Y ) and C0(X,Y ) are closed with respect to d∞.

Proof. Let fn → f . A sequence of continuous functions converging uniformly
has a continuous limit function, as we saw in Chapter 3. So f ∈ C0(X,Y ).

A finite intersection of closed sets is closed, so C1
0 (X,Y ) is closed by closed-

ness of B(X,Y ) and C0(X,Y ).

Lemma 4. If (Y, dY ) is complete, then C0(X,Y ) and C0
b (X,Y ) are also com-

plete with respect to d∞.

Proof. We can argue the same way as in Lemma 2, since defining a limit
f(x) := limn→∞ fn(x) relies only on completeness of Y . Then we prove uniform
convergence, which does not need any of the properties of the underlying spaces.
Finally, we can use closedness of C0(X,Y ) and C0

b (X,Y ) to conclude that the
limit function lies within the said function space.
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1.1 Characterization of compact sets: the Ascoli-Arzelà
theorem

Spaces of functions are often not finite-dimensional: Bolzano-Weierstrass is not
a valid tool here. But recall that in complete metric spaces, compact sets are
precisely the closed and totally bounded sets.

We know that if Y is complete, then the aforementioned C0(X,Y ), C0
b (X,Y ),

B(X,Y ) are also complete with respect to d∞. So we could use this character-
ization. But another characterization works better and is simpler to check for
functions.

Definition 4. A set of functions K ⊂ C0(X,Y ) is called equicontinuous if
all f ∈ K admit a same modulus of continuity (implying that they are
uniformly continuous). Formally:

∀ϵ > 0 : ∃δ > 0 : ∀x ∈ X : ∀s ∈ Bδ(x) : f(s) ∈ Bϵ(f(x))

Remark 2. We can translate this to a lower level of abstraction: a set K ⊂
C0(X,Y ) is called equicontinuous if for all ϵ > 0 There is a δ > 0 such that:

∀f ∈ K : ∀x, y ∈ X : dX(x, y) < δ : dY (f(x), f(y)) < ϵ

Theorem 1. Ascoli-Arzelà theorem
For (X, dX), (Y, dY ) metric spaces, where X is compact and Y is com-

plete, K ⊂ C0(X,Y ) compact with respect to the uniform metric d∞ (”with
respect to uniform convergence”) if and only if:

(i) For all x ∈ X, we have that

F(x) = {f(x) : f ∈ F} is compact

(ii) F is equicontinuous.

(iii) F is closed with respect to d∞

Corrolary 1. Let (X, d1) be a compact metric space, and let (Y, d2) be a
complete metric space. Let (fn)n ∈ N ⊂ C0(X,Y ) be a sequence of equicon-
tinuous functions such that, for each x ∈ X, the set

{fn(x) : n ∈ N}

is compact. Then, there exists a subsequence (fnk
)k∈N and a function f ∈

C0(X,Y ) such that fnk
→ f uniformly.

In the case the target space is a finite dimensional R-vector space, say RM

, we can give an easier characterization of compact sets of C0(X,RM ). This is
because Bolzano-Weierstrass gives an easier characterization of compact sets in
RM
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Definition 5. Let (X, dX) and (Y, dY ) be two metric spaces, and let F ⊂
C0(X,Y ). Let F ⊂ C0(X,Y ). We say that the family F is equibounded if
there exists D < ∞ such that

diam(f(X)) ≤ D

for all f ∈ F .

Corrolary 2. Let (X, d) be a compact metric space. Let (fn)n∈N ⊂ C0(X,RM )
be a sequence of equibounded and equicontinuous functions. Then, there
exists a subsequence (fnk

)k∈N and a function f ∈ C0(X,RM ) such that fnk
→

f uniformly.

Proof. Homework exercise.

1.2 Separability for functions of a real variable (Theorems
of Weierstrass)

R is separable, with a countable dense set being Q. It is useful to be able to
approximate functions with a countable set of functions of a certain class (e.g.
polynomials!)

Weierstrass proved that algebraic polynomials Q[X] are dense in C([0, 1])

Proposition 1. f : [0, 1] → R of class C0 and ϵ > 0. Then

∃P : [0, 1] → R polynomial s.t. |f − P |C0 < ϵ

Proof. (Or, rather a sketch) Note that by compactness of [0, 1], f is uniformly
continuous.

1. Approximate f with a spline (= a piecewise affine function). This can be
done by considering a cover of [0, 1] in (xi − δ, xi + δ) where we chose δ
s.t. for any x, y with |x − y| < δ we have |f(x) − f(y)| < ϵ/2 (uniform
continuity). Using this cover to create a partition of [0, 1] by starting with
A1 = x1 ± δ, then pick Ai := [0, 1]\ ∪i−1

j=1 Aj , then connect endpoints
(xi, f(x, i)) with secant lines, giving a uniformly ϵ-close spline.

2. Write the spline as a linear combination of absolute values (this can always
be done, and is one of the homework exercises).

3. approximate | · | uniformly as a sequence of polynomials (duh.). But
this can be done by approximating the square root function on [0, 1]:
This you do using a uniformly monotonous sequence of polynomials, that
converges pointwise to t 7→

√
t. Then use Dini’s theorem to obtain uniform

convergence.
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2 Homework

Exercise 1 Prove that, given a ϵ > 0 and a continuous function f : [0, 1] →
R, there exists a piecewise affine function g : [0, 1] → Rsuch that |f−g|C0 < ϵ.

Proof Since [0, 1] is compact and f is continuous, f is uniformly contin-
uous. So for any ϵ > 0, we can find a δ > 0 such that |f(x) − f(y)| < ϵ
whenever |x − y| < δ. So do this for fracϵ2 > 0, and define the partition
{[nδ, (n+ 1)δ) : n = 0, 1, ..., ⌈ 1

δ ⌉ − 1} ∪ {[(n+ 1)δ, 1]}. Call the interval starting
at kδ the k-th interval Ik and define the right and left endpoints lI = inf I,
rI = sup I Then define gk : Ik → R through

gk(x) = f(lIk) + [f(rIk)− f(lIk)]x

In other words the linear interpolation of (lI, f(lI)) and (rI, f(rI)). Then
set g : [0, 1] → R as g(x) := gk(x) for x ∈ Ik (unique because this is a partition
of [0, 1]). g is piecewise affine and continuous: namely, g is the union of affine
functions gk, and these connect at the endpoints, because

gk(lIk) = f(lIk) = f(rIk−1) = gk−1(rIk−1)

We now have, for x ∈ Ik, that

g(x) ∈ [g(lIk), g(rIk)] ∪ [g(rIk), g(lIk)] ⊂ [inf x ∈ Ikf(x), sup
x∈Ik

f(x)]

Since also | inf x ∈ Ikf(x)−supx∈Ik
f(x)| < ϵ

2 due to the δ-width of the interval,
and g(x) is between these values, we can conclude

|g(x)− f(x)| ≤ max

{
|g(x)− sup

x∈Ik

f(x)|, |g(x)− inf x ∈ Ikf(x)− sup
x∈Ik

f(x)|
}

≤ ϵ

2
< ϵ

So we found, for an arbitrary ϵ > 0, a piecewise affine g

Exercise 2 In this exercise we want to prove the first part of the Ascoli-Arzelà
Theorem, in the case where the target space is RM . Let (X, d) be metric spaces,
withX compact. Let F ⊂ C0(X;RM) be a family of functions that is compact
with respect to the uniform convergence. Prove that F is equibounded and
equicontinuous. Namely, prove that:

(i) Equibounded. There exists R > 0 such that

|f(x)| ≤ R

for all f ∈ F , and all x ∈ X;

(ii) Equicontinuous. For each ϵ > 0, it is possible to find δ > 0 such that

|f(x)− f(y)| < ϵ

for all x, y ∈ X with d(x, y) < δ, and all f ∈ F .
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Proof

(i) Suppose not, then

∀n ∈ N : ∃xn ∈ X : ∃fn ∈ F : |fn(xn)| ≥ n

Since F is compact, we can extract a subsequence fnk
| such that fnk

| →
f ∈ F uniformly, and we can extract a further sequence such that xnkl

→
x ∈ X. Since it still holds that |fnkl

(xnkl
) ≥ nkl

≥ l, we can assume
w.l.o.g. that (fn)n and (xn)n are already convergent to f , x. Then, since
fn → f uniformly, it follows that we can take limits simultaneously:

lim
n→∞

fn(xn) = f(x)

So (fn(xn))n is a bounded sequence. But this is a contradiction with
|fn(xn)| ≥ n, ∀n ∈ N

(ii) Suppose not. Then there is an ϵ > 0 such that:

∀n ∈ N : ∃xn, yn ∈ X, fn ∈ F : |yn − xn| <
1

n
and |fn(xn)− fn(yn)| ≥ ϵ

We can w.l.o.g. take subsequences that converge since |xnk
− ynk

| < 1
nk

≤
frac1k, i.e. the statement still holds after having taken a subsequence
( 1
nk

≤ 1
k since the sublabelling k 7→ nk is strictly increasing by definition).

So assume that fn
C0

−−→ f ∈ F , xn → x yn → y. Since |xn − yn| < 1
n ,

we can conclude y = x, so they converge to the same limit. This implies,
again, that we can take the limit simultaneously:

lim
n→∞

fn(xn) = f(x) lim
n→∞

fn(yn) = f(x)

Now, the difference fn(xn)−fn(yn) then also converges as n → ∞, namely
to the difference f(x) − f(x) = 0. By continuity of the norm, |fn(xn) −
fn(yn)| also converges, and:

lim
n→∞

|fn(xn)− fn(yn)| = 0

Which contradicts ∀n ∈ N : |fn(xn)− fn(yn)| ≥ ϵ > 0

Exercise 3 Let X = C1([a, b]), and consider the C1 norm on it, defined as

|f |C1 := |f |C0 + |f ′|C0

, Prove that a family of functions F ⊂ Xis compact with respect to the C1

norm if and only if

(i) F is closed
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(ii) There exists c ∈ [a, b] such that the set {f(c) : f ∈ F} is bounded in R;

(iii) The family
{f ′ : f ∈ F} ⊂ C0([a, b])

is equibounded and equicontinuous.

Proof

=⇒ Any compact set is closed, so if F is C1-compact, then it is C1-closed (i).

Moreover, Since | · |C1 = | · |C0 + | d
dx · |C0 , it follows that for a sequence to

converge in C1-norm, it has to be convergent in C0 norm and its derivative
should be convergent in C0-norm (since the norms are nonnegative so they
should go to 0 separately). This implies that F is C0-compact, hence
by using Ascoli-Arzelà it follows that ∀x ∈ [a, b] : {f(x) : f ∈ F} is
compact, so in particular bounded, so there is certainly a c ∈ [a, b] so that
{f(c) : f ∈ F} is bounded (ii).

Finally, F ′ := {f ′ : f ∈ F} is compact, since if (gn)n is a sequence
in F ′, we can consider a sequence (fn)n in F such that f ′

n = gn, then
extract a C1-convergent subsequence to an f ∈ F and observe that by
fn − f |C1 → 0, we also have |gn − f ′|C0 → 0 and since f ′ ∈ F , conclude
that we found a convergent subsequence of gn that converge in C0-norm
to a function in F ′. By Ascoli-Arzelà, we can conclude that F ′ must
therefore be equibounded and equicontinuous (iii).

⇐= Let (fn) be a sequence in F . Then (f ′
n)n is a sequence of equibounded and

equicontinuous functions, therefore (by a corollary of Arzoli-Ascelà) we can
extract a C0-converging subsequence f ′

nk
, which we relabel immediately:

assume f ′
n

C0

−−→ g ∈ F . Next, let c be as in (ii). Since F is C1-closed, it
is also C0-closed, therefore {f(c) : f ∈ F} is closed, because otherwise we
can find a sequence (hn)n such that (hn(c))n does not converge in F(c) =
{f(c) : f ∈ F}, but then (hn)n cannot C0-converge in F since it does not
converge pointwise. Therefore, F(c) is closed, and also is bounded. So it
is compact by Bolzano-Weierstrass. This means we can extract a further
subsequence, which we relabel again, such that fn(c) → y = p(c) for some
p ∈ F . Using the fact that fn is differentiable, and that its derivative is
continuous, hence Riemann-integrable, write

fn(x) = fn(c) +

∫ x

c

f ′
n(s)ds

Where the convention is that if x < c, then
∫ x

c
:= −

∫ c

x
. Define f ∈ C1
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through f(x) = y +
∫ x

c
g(s)ds. Then,

0 ≤ |fn − f |C1 =

∣∣∣∣fn(c)− y +

∫ x

c

(f ′
n(s)− g(s))ds

∣∣∣∣
C0

+ |f ′
n − g|C0

≤ |fn(c)− y|+
∣∣∣∣∫ x

c

(f ′
n(s)− g(s))ds

∣∣∣∣
C0

+ |f ′
n − g|C0

≤ |fn(c)− y|+ sup
x∈[a,b]

∣∣∣∣∫ x

c

|f ′
n(s)− g(s)|ds

∣∣∣∣+ |f ′
n − g|C0

≤ |fn(c)− y|+ sup
x∈[a,b]

∣∣∣∣∫ x

c

|f ′
n − g|C0ds

∣∣∣∣+ |f ′
n − g|C0

= |fn(c)− y|+ sup
x∈[a,b]

|c− x| · |f ′
n − g|C0 + |f ′

n − g|C0

≤ |fn(c)− y|+ |b− a| · |f ′
n − g|C0 + |f ′

n − g|C0

And since this is just a linear combination of two sequences that converge
to 0 (by the extraction of appropriate subsequences), it follows that we
can bound this from above by any ϵ > 0 if we choose n ≥ N sufficiently

large, so fn
C1

−−→ f as n → ∞. All that is left is to show f ∈ F , but

this follows by the premise that F is C1-closed and fn
C1

−−→ f . Therefore
f ∈ F .
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