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1 Spaces of continuous functions

Definition 1. For (X,dx), (Y, dy) metric spaces, define the space of bounded
functions X — Y

B(X,Y)={f:X — Y : diam(f(X)) < oo}
Notation 1. We will use the shorthand: B(X) := B(X,R)
Note that f € B(X,Y) if and only if one of the following holds:

Yy eY :3R>0:f(X)C Br(y)
JyeY :3IR>0:f(X) C Bry)

Definition 2. We can equip B(X,Y) with the uniform metric:

doo(f,9) = sup dy (f(z),g(x))

Lemma 1. B(X,Y) with d, is closed.

Proof. Let f,, — f with f,, € B(X,Y). Like in Chapter 3, we argue with the
following triangle inequality: for any z,y € X,

dy (f(2), f(y) < dy (fu(2), f(2)) + dy (fa(y), [ () + dy (fu(2), fn(y))

We can bound dy (fn(x), f(y)) and dy (fn(y), f(y)) by 1 if we let n > Ny, and
we know by f, € B(X,Y) that dy(fn(z), fn(y)) is bounded. So we have a
bound for the right hand side, namely

supn € Ndiam(f(X)) + 2
Therefore, conclude that f € B(X,Y). O

Lemma 2. IfY is complete, then B(X,Y) with do, is complete. The con-
verse is also true: if Y is not complete, then B(X,Y) is not complete either
(consider a sequence of constant functions f, = y, where (Yn)neny C Y s
Cauchy but not convergent).



Proof. Let (fn)nen be Cauchy. As a consequence, for every z € X,

(fn(z))nGN - Y

is Caucy, and by completeness of Y, this sequence has a limit. Define f : X — Y
through

@)= lim fo(z), weX

n

Left to show is that f is continuous and that f, — f uniformly. The former
follows from the latter. To show the first, we argue by continuity of the norm,
that for any z € X:

() = Fa(] = T |fn(2) = ful2)]

And |fim(2) — fu(2)] <€, Vz € X, if we let m,n > N,. Therefore, if n > N,
then

sup |f(z) — fu(z)| = sup lim |fin(z) — fu(z)] < supe <e
zeX rEeX M—x zeX

So we conclude |f(z) — fn(x)|co < € for all n > Ne. This implies the uniform
convergence. O

Definition 3. For (X,dx), (Y,dy) metric spaces, define:

CUX,Y)={f:X =Y : [ continuous}
CH(X,Y)=C"X,Y)NB(X,Y)

Remark 1. If X is compact, we have CY = C° since continuous functions
assume a minimum and a maximum on a compact set.

Lemma 3. C°(X,Y) and C°(X,Y) are closed with respect to du.

Proof. Let f, — f. A sequence of continuous functions converging uniformly
has a continuous limit function, as we saw in Chapter 3. So f € C°(X,Y).

A finite intersection of closed sets is closed, so C}(X,Y) is closed by closed-
ness of B(X,Y) and C°(X,Y). O

Lemma 4. If (Y, dy) is complete, then C°(X,Y) and CP(X,Y) are also com-
plete with respect to do.

Proof. We can argue the same way as in Lemma 2, since defining a limit
f() :=lim,, oo frn(x) relies only on completeness of Y. Then we prove uniform
convergence, which does not need any of the properties of the underlying spaces.
Finally, we can use closedness of C°(X,Y) and CP(X,Y) to conclude that the
limit function lies within the said function space. O



1.1 Characterization of compact sets: the Ascoli-Arzela
theorem

Spaces of functions are often not finite-dimensional: Bolzano-Weierstrass is not
a valid tool here. But recall that in complete metric spaces, compact sets are
precisely the closed and totally bounded sets.

We know that if Y is complete, then the aforementioned C°(X,Y), CY(X,Y),
B(X,Y) are also complete with respect to do. So we could use this character-
ization. But another characterization works better and is simpler to check for
functions.

Definition 4. A set of functions K C C°(X,Y) is called equicontinuous if
all f € K admit a same modulus of continuity (implying that they are
uniformly continuous). Formally:

Ve>0:30>0:Vx € X :Vs € Bs(x) : f(s) € Be(f(x))

Remark 2. We can translate this to a lower level of abstraction: a set K C
C%(X,Y) is called equicontinuous if for all e > 0 There is a § > 0 such that:

VieK:Ve,ye X :dx(z,y) <d:dy(f(x), f(y)) <e

Theorem 1. Ascoli-Arzelda theorem

For (X,dx), (Y,dy) metric spaces, where X is compact and Y is com-
plete, K C C°(X,Y) compact with respect to the uniform metric do, (“with
respect to uniform convergence”) if and only if:

(i) For all x € X, we have that

F(x)={f(x): f e F} is compact

(i) F is equicontinuous.
(i1i) F is closed with respect to deo

Corrolary 1. Let (X,dl) be a compact metric space, and let (Y,d2) be a
complete metric space. Let (fo)n € N C CY(X,Y) be a sequence of equicon-
tinuous functions such that, for each x € X, the set

{fn(z):n e N}

is compact. Then, there exists a subsequence (fyn, )ken and a function f €
C°(X,Y) such that fn, — f uniformly.

In the case the target space is a finite dimensional R-vector space, say RM
, we can give an easier characterization of compact sets of C°(X,RM). This is
because Bolzano-Weierstrass gives an easier characterization of compact sets in
RZ\/I



Definition 5. Let (X,dx) and (Y,dy) be two metric spaces, and let F C
CYX,Y). Let F C C°X,Y). We say that the family F is equibounded if
there exists D < oo such that

diam(f(X)) <D
forall f € F.

Corrolary 2. Let (X, d) be a compact metric space. Let (fn)nen C CO(X,RM)
be a sequence of equibounded and equicontinuous functions. Then, there
exists a subsequence (fn, )ren and a function f € C°(X,RM) such that f,, —
f uniformly.

Proof. Homework exercise. O

1.2 Separability for functions of a real variable (Theorems
of Weierstrass)

R is separable, with a countable dense set being Q. It is useful to be able to
approximate functions with a countable set of functions of a certain class (e.g.
polynomials!)

Weierstrass proved that algebraic polynomials Q[X] are dense in C([0,1])

Proposition 1. f:[0,1] — R of class C° and € > 0. Then
3P : [0,1] — R polynomial s.t. |f — Plco < €

Proof. (Or, rather a sketch) Note that by compactness of [0,1], f is uniformly
continuous.

1. Approximate f with a spline (= a piecewise affine function). This can be
done by considering a cover of [0,1] in (z; — d,z; + 0) where we chose &
s.t. for any x,y with |z — y| < § we have |f(z) — f(y)| < €/2 (uniform
continuity). Using this cover to create a partition of [0, 1] by starting with
Ay = 7 £ 6, then pick A; := [0,1]\ U§;1 A;, then connect endpoints
(24, f(2z,4)) with secant lines, giving a uniformly e-close spline.

2. Write the spline as a linear combination of absolute values (this can always
be done, and is one of the homework exercises).

3. approximate | - | uniformly as a sequence of polynomials (duh.). But
this can be done by approximating the square root function on [0,1]:
This you do using a uniformly monotonous sequence of polynomials, that
converges pointwise to t — v/£. Then use Dini’s theorem to obtain uniform
convergence.

O



2 Homework

Exercise 1 Prove that, given a € > 0 and a continuous function f : [0,1] —
R, there exists a piecewise affine function g : [0,1] — Rsuch that |f —g|co < €.

Proof Since [0,1] is compact and f is continuous, f is uniformly contin-
uous. So for any € > 0, we can find a 6 > 0 such that |f(z) — f(y)| < €
whenever | — y| < §. So do this for frace2 > 0, and define the partition
{{nd,(n+1)0) :n=0,1,...,[+] = 1} U{[(n + 1)§,1]}. Call the interval starting
at k0 the k-th interval I and define the right and left endpoints {I = inf [,
rI = sup I Then define g, : I — R through

gr(w) = f(Ux) + [f(rQx) — f(Ui)]z

In other words the linear interpolation of (II, f(II)) and (I, f(rI)). Then
set g:[0,1] = R as g(x) := gi(z) for = € I}, (unique because this is a partition
of [0,1]). g is piecewise affine and continuous: namely, ¢ is the union of affine
functions gx, and these connect at the endpoints, because

gr(Uy) = f(lIx) = f(rlk—1) = gr—1(rlr_1)
We now have, for x € I, that

g(w) € [g(ly), g(r1x)] U [g(rik), g(lIx)] C [infx € Iy f(x), sup f(z)]

x€ly

Since also |infx € Ij f(x) —sup,¢;, f(z)] < § due to the é-width of the interval,
and g(x) is between these values, we can conclude

lg(z) — f(z)] < max {Ig(x) s f@)|,]g(z) —infx € I f(z) — Sup f(x)}

< -—<e

N

So we found, for an arbitrary € > 0, a piecewise affine g

Exercise 2 In this exercise we want to prove the first part of the Ascoli-Arzela
Theorem, in the case where the target space is RM . Let (X, d) be metric spaces,
with X compact. Let F C C°(X; RM) be a family of functions that is compact
with respect to the uniform convergence. Prove that F is equibounded and
equicontinuous. Namely, prove that:

(i) Equibounded. There exists R > 0 such that
[f(@) <R
for all f € F, and all z € X
(ii) Equicontinuous. For each € > 0, it is possible to find § > 0 such that

|f(z) = fy)] <e
for all z,y € X with d(x,y) < ¢, and all f € F.



Proof

(i)

Suppose not, then
VneN:3x, € X :3f, € F:|fulzn)| >n

Since F is compact, we can extract a subsequence fy, | such that f,, | —
f € F uniformly, and we can extract a further sequence such that Ty, —
z € X. Since it still holds that [fn, (zn,,) = nk, > [, We can assume
w.l.o.g. that (f,), and (x,), are already convergent to f, x. Then, since
frn = [ uniformly, it follows that we can take limits simultaneously:

lim f,(z,) = f(z)

n—oo

So (fn(zn))n is a bounded sequence. But this is a contradiction with
| fa(zn)| = n, VR EN

Suppose not. Then there is an € > 0 such that:

1
Vn €N :3x,,y, €X, fn €F :|yn — | < - and |frn(2n) — fa(yn)| > €

fraclk, i.e. the statement still holds after having taken a subsequence
(%c < % since the sublabelling &k +— ny, is strictly increasing by definition).

: 1
We can w.l.o.g. take subsequences that converge since |z, — yn,| < an S

n

0
So assume that f, <, feF z, >y, =y Since |z, —yn| < %,

we can conclude y = x, so they converge to the same limit. This implies,
again, that we can take the limit simultaneously:

Now, the difference f,(z,)— fn(yn) then also converges as n — oo, namely
to the difference f(x) — f(x) = 0. By continuity of the norm, |f,(z,) —
fn(yn)| also converges, and:

n—oo

Which contradicts Vn € N : |f, () — fn(yn)| =€ >0

Exercise 3 Let X = C'([a,b]), and consider the C' norm on it, defined as

|fler = |fleo + || co

, Prove that a family of functions 7 C Xis compact with respect to the C!
norm if and only if

(i)

F is closed



(ii) There exists ¢ € [a, b] such that the set {f(c) : f € F} is bounded in R;

(iii) The family
{f'+feF}cCab])

is equibounded and equicontinuous.

Proof

= Any compact set is closed, so if F is C'-compact, then it is C*-closed (i).

Moreover, Since | [c1 = |+ |co + |4 - |co, it follows that for a sequence to
converge in C'-norm, it has to be convergent in C° norm and its derivative
should be convergent in C%-norm (since the norms are nonnegative so they
should go to 0 separately). This implies that F is C°-compact, hence
by using Ascoli-Arzela it follows that Vz € [a,b] : {f(z) : f € F} is
compact, so in particular bounded, so there is certainly a ¢ € [a, b] so that

{f(c): f € F} is bounded (ii).

Finally, 7' := {f’ : f € F} is compact, since if (g,)n is a sequence
in F', we can consider a sequence (fy), in F such that f, = g,, then
extract a C''-convergent subsequence to an f € F and observe that by
fn — flor — 0, we also have |g, — f’|co — 0 and since f’ € F, conclude
that we found a convergent subsequence of g,, that converge in C°-norm
to a function in F’. By Ascoli-Arzeld, we can conclude that F’ must
therefore be equibounded and equicontinuous (iii).

<= Let (f,) be asequence in F. Then (f},), is a sequence of equibounded and
equicontinuous functions, therefore (by a corollary of Arzoli-Asceld) we can
extract a CY-converging subsequence f/, .» Which we relabel immediately:

assume f;, <, g € F. Next, let ¢ be as in (ii). Since F is C'-closed, it
is also C°-closed, therefore {f(c) : f € F} is closed, because otherwise we
can find a sequence (hy,), such that (h,(c)), does not converge in F(c) =
{f(e) : f € F}, but then (h,), cannot C%-converge in F since it does not
converge pointwise. Therefore, F(c) is closed, and also is bounded. So it
is compact by Bolzano-Weierstrass. This means we can extract a further
subsequence, which we relabel again, such that f,(c) — y = p(c) for some
p € F. Using the fact that f, is differentiable, and that its derivative is
continuous, hence Riemann-integrable, write

Fule) = ) + [ fil)s

Where the convention is that if z < ¢, then [ := — [, Define f € C*



through f(z) =y + [ g(s)ds. Then,

0< fa— flor = | fule) —y + / Falo) = gleds| +1f3 = gleo
< |fule) =yl + (fé(S)—g(S))dsc + £y, = glco
< 1fule) — 9l + sup / 1£4(5) — g(s)lds| + |72 — gl
wEab
< 1fale) — 9l + sup / 1, — glends| + 1, — gleo
wEab

= |fu(c) =yl + sup |c—z|-|f), —glco + |f}, = gleo

z€[a,b]

< |fn(e) =yl + b —al - |f5 = glco + |f5 = glco

And since this is just a linear combination of two sequences that converge
to 0 (by the extraction of appropriate subsequences), it follows that we
can bound this from above by any € > 0 if we choose n > N sufficiently

large, so f, El% f asn — oo. All that is left is to show f € F, but

this follows by the premise that F is C'-closed and f, C—1> f. Therefore
ferF.



