Analysis 2, Chapter 4

Matthijs Muis

December 2023

1 Spaces of continuous functions

Definition 1. For (X, d_X) , (Y, d_Y) metric spaces, define the space of bounded functions $X \to Y$:

 $B(X,Y) = \{f : X \to Y : \operatorname{diam}(f(X)) < \infty\}$

Notation 1. We will use the shorthand: $B(X) := B(X, \mathbb{R})$

Note that $f \in B(X, Y)$ if and only if one of the following holds:

$$\forall y \in Y : \exists R > 0 : f(X) \subset B_R(y)$$

$$\exists y \in Y : \exists R > 0 : f(X) \subset B_R(y)$$

Definition 2. We can equip B(X, Y) with the uniform metric:

$$d_{\infty}(f,g) = \sup_{x \in X} d_Y(f(x),g(x))$$

Lemma 1. B(X,Y) with d_{∞} is closed.

Proof. Let $f_n \to f$ with $f_n \in B(X, Y)$. Like in Chapter 3, we argue with the following triangle inequality: for any $x, y \in X$,

$$d_Y(f(x), f(y)) \le d_Y(f_n(x), f(x)) + d_Y(f_n(y), f(y)) + d_Y(f_n(x), f_n(y))$$

We can bound $d_Y(f_n(x), f(y))$ and $d_Y(f_n(y), f(y))$ by 1 if we let $n \ge N_1$, and we know by $f_n \in B(X, Y)$ that $d_Y(f_n(x), f_n(y))$ is bounded. So we have a bound for the right hand side, namely

$$\sup n \in \mathbb{N}\operatorname{diam}(f(X)) + 2$$

Therefore, conclude that $f \in B(X, Y)$.

Lemma 2. If Y is complete, then B(X,Y) with d_{∞} is complete. The converse is also true: if Y is not complete, then B(X,Y) is not complete either (consider a sequence of constant functions $f_n = y_n$ where $(y_n)_{n \in \mathbb{N}} \subset Y$ is Cauchy but not convergent).

Proof. Let $(f_n)_{n \in \mathbb{N}}$ be Cauchy. As a consequence, for every $x \in X$,

$$(f_n(x))_{n\in\mathbb{N}}\subset Y$$

is Caucy, and by completeness of Y, this sequence has a limit. Define $f:X\to Y$ through

$$f(x) := \lim_{n \to \infty} f_n(x), \quad x \in X$$

Left to show is that f is continuous and that $f_n \to f$ uniformly. The former follows from the latter. To show the first, we argue by continuity of the norm, that for any $z \in X$:

$$|f(z) - f_n(z)| = \lim_{m \to \infty} |f_m(z) - f_n(z)|$$

And $|f_m(z) - f_n(z)| < \epsilon$, $\forall z \in X$, if we let $m, n \ge N_{\epsilon}$. Therefore, if $n \ge N_{\epsilon}$, then

$$\sup_{x \in X} |f(x) - f_n(x)| = \sup_{x \in X} \lim_{m \to \infty} |f_m(x) - f_n(x)| \le \sup_{x \in X} \epsilon \le \epsilon$$

So we conclude $|f(x) - f_n(x)|_{C^0} \le \epsilon$ for all $n \ge N\epsilon$. This implies the uniform convergence.

Definition 3. For (X, d_X) , (Y, d_Y) metric spaces, define:

$$C^{0}(X,Y) = \{f : X \to Y : f \text{ continuous}\}$$
$$C^{0}_{b}(X,Y) = C^{0}(X,Y) \cap B(X,Y)$$

Remark 1. If X is compact, we have $C_b^0 = C^0$ since continuous functions assume a minimum and a maximum on a compact set.

Lemma 3. $C^0(X,Y)$ and $C^0(X,Y)$ are closed with respect to d_{∞} .

Proof. Let $f_n \to f$. A sequence of continuous functions converging uniformly has a continuous limit function, as we saw in Chapter 3. So $f \in C^0(X, Y)$.

A finite intersection of closed sets is closed, so $C_0^1(X, Y)$ is closed by closedness of B(X, Y) and $C^0(X, Y)$.

Lemma 4. If (Y, d_Y) is complete, then $C^0(X, Y)$ and $C^0_b(X, Y)$ are also complete with respect to d_{∞} .

Proof. We can argue the same way as in Lemma 2, since defining a limit $f(x) := \lim_{n \to \infty} f_n(x)$ relies only on completeness of Y. Then we prove uniform convergence, which does not need any of the properties of the underlying spaces. Finally, we can use closedness of $C^0(X, Y)$ and $C_b^0(X, Y)$ to conclude that the limit function lies within the said function space.

1.1 Characterization of compact sets: the Ascoli-Arzelà theorem

Spaces of functions are often not finite-dimensional: Bolzano-Weierstrass is not a valid tool here. But recall that in complete metric spaces, compact sets are precisely the **closed** and **totally bounded** sets.

We know that if Y is **complete**, then the aforementioned $C^0(X, Y)$, $C_b^0(X, Y)$, B(X, Y) are also complete with respect to d_{∞} . So we could use this characterization. But another characterization works better and is simpler to check for functions.

Definition 4. A set of functions $\mathcal{K} \subset C^0(X, Y)$ is called **equicontinuous** if all $f \in \mathcal{K}$ admit a **same modulus of continuity** (implying that they are uniformly continuous). Formally:

$$\forall \epsilon > 0 : \exists \delta > 0 : \forall x \in X : \forall s \in B_{\delta}(x) : f(s) \in B_{\epsilon}(f(x))$$

Remark 2. We can translate this to a lower level of abstraction: a set $\mathcal{K} \subset C^0(X,Y)$ is called **equicontinuous** if for all $\epsilon > 0$ There is a $\delta > 0$ such that:

 $\forall f \in \mathcal{K} : \forall x, y \in X : d_X(x, y) < \delta : d_Y(f(x), f(y)) < \epsilon$

Theorem 1. Ascoli-Arzelà theorem

For (X, d_X) , (Y, d_Y) metric spaces, where X is **compact** and Y is **complete**, $\mathcal{K} \subset C^0(X, Y)$ **compact** with respect to the uniform metric d_{∞} ("with respect to uniform convergence") if and only if:

(i) For all $x \in X$, we have that

$$\mathcal{F}(x) = \{f(x) : f \in \mathcal{F}\}$$
 is compact

- (ii) \mathcal{F} is equicontinuous.
- (iii) \mathcal{F} is closed with respect to d_{∞}

Corrolary 1. Let (X, d1) be a **compact** metric space, and let (Y, d2) be a **complete** metric space. Let $(f_n)n \in N \subset C^0(X, Y)$ be a sequence of **equicon**tinuous functions such that, for each $x \in X$, the set

$$\{f_n(x):n\in\mathbb{N}\}\$$

is compact. Then, there exists a subsequence $(f_{n_k})_{k\in\mathbb{N}}$ and a function $f \in C^0(X,Y)$ such that $f_{n_k} \to f$ uniformly.

In the case the target space is a finite dimensional \mathbb{R} -vector space, say \mathbb{R}^M , we can give an easier characterization of compact sets of $C^0(X, \mathbb{R}^M)$. This is because Bolzano-Weierstrass gives an easier characterization of compact sets in \mathbb{R}^M

Definition 5. Let (X, d_X) and (Y, d_Y) be two metric spaces, and let $F \subset C^0(X, Y)$. Let $F \subset C^0(X, Y)$. We say that the family F is equibounded if there exists $D < \infty$ such that

$$\operatorname{diam}(f(X)) \le D$$

for all $f \in F$.

Corrolary 2. Let (X, d) be a compact metric space. Let $(f_n)_{n \in \mathbb{N}} \subset C^0(X, \mathbb{R}^M)$ be a sequence of equibounded and equicontinuous functions. Then, there exists a subsequence $(f_{n_k})_{k \in \mathbb{N}}$ and a function $f \in C^0(X, \mathbb{R}^M)$ such that $f_{n_k} \to f$ uniformly.

Proof. Homework exercise.

1.2 Separability for functions of a real variable (Theorems of Weierstrass)

 \mathbb{R} is separable, with a countable dense set being \mathbb{Q} . It is useful to be able to approximate functions with a countable set of functions of a certain class (e.g. polynomials!)

Weierstrass proved that algebraic polynomials $\mathbb{Q}[X]$ are dense in C([0,1])

Proposition 1. $f:[0,1] \to \mathbb{R}$ of class C^0 and $\epsilon > 0$. Then

 $\exists P: [0,1] \to \mathbb{R} \text{ polynomial s.t. } |f-P|_{C^0} < \epsilon$

Proof. (Or, rather a sketch) Note that by compactness of [0, 1], f is uniformly continuous.

- 1. Approximate f with a spline (= a piecewise affine function). This can be done by considering a cover of [0,1] in $(x_i - \delta, x_i + \delta)$ where we chose δ s.t. for any x, y with $|x - y| < \delta$ we have $|f(x) - f(y)| < \epsilon/2$ (uniform continuity). Using this cover to create a partition of [0,1] by starting with $A_1 = x_1 \pm \delta$, then pick $A_i := [0,1] \setminus \bigcup_{j=1}^{i-1} A_j$, then connect endpoints $(x_i, f(x, i))$ with secant lines, giving a uniformly ϵ -close spline.
- 2. Write the spline as a linear combination of absolute values (this can always be done, and is one of the homework exercises).
- 3. approximate $|\cdot|$ uniformly as a sequence of polynomials (duh.). But this can be done by approximating the square root function on [0, 1]: This you do using a uniformly monotonous sequence of polynomials, that converges pointwise to $t \mapsto \sqrt{t}$. Then use Dini's theorem to obtain uniform convergence.

2 Homework

Exercise 1 Prove that, given a $\epsilon > 0$ and a **continuous function** $f : [0, 1] \rightarrow \mathbb{R}$, there exists a **piecewise affine** function $g : [0, 1] \rightarrow R$ such that $|f - g|_{C^0} < \epsilon$.

Proof Since [0,1] is compact and f is continuous, f is **uniformly continuous**. So for any $\epsilon > 0$, we can find a $\delta > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$. So do this for $frac\epsilon 2 > 0$, and define the partition $\{[n\delta, (n+1)\delta) : n = 0, 1, ..., \lceil \frac{1}{\delta} \rceil - 1\} \cup \{[(n+1)\delta, 1]\}$. Call the interval starting at $k\delta$ the k-th interval I_k and define the right and left endpoints $lI = \inf I$, $rI = \sup I$ Then define $g_k : I_k \to \mathbb{R}$ through

$$g_k(x) = f(lI_k) + [f(rI_k) - f(lI_k)]x$$

In other words the linear interpolation of (lI, f(lI)) and (rI, f(rI)). Then set $g: [0,1] \to \mathbb{R}$ as $g(x) := g_k(x)$ for $x \in I_k$ (unique because this is a partition of [0,1]). g is piecewise affine and continuous: namely, g is the union of affine functions g_k , and these connect at the endpoints, because

$$g_k(lI_k) = f(lI_k) = f(rI_{k-1}) = g_{k-1}(rI_{k-1})$$

We now have, for $x \in I_k$, that

$$g(x) \in [g(lI_k), g(rI_k)] \cup [g(rI_k), g(lI_k)] \subset [\inf x \in I_k f(x), \sup_{x \in I_k} f(x)]$$

Since also $|\inf x \in I_k f(x) - \sup_{x \in I_k} f(x)| < \frac{\epsilon}{2}$ due to the δ -width of the interval, and g(x) is between these values, we can conclude

$$|g(x) - f(x)| \le \max\left\{|g(x) - \sup_{x \in I_k} f(x)|, |g(x) - \inf x \in I_k f(x) - \sup_{x \in I_k} f(x)|\right\}$$
$$\le \frac{\epsilon}{2} < \epsilon$$

So we found, for an arbitrary $\epsilon > 0$, a piecewise affine g

Exercise 2 In this exercise we want to prove the first part of the Ascoli-Arzelà Theorem, in the case where the target space is \mathbb{R}^M . Let (X, d) be metric spaces, with X compact. Let $\mathcal{F} \subset C^0(X; RM)$ be a family of functions that is **compact** with respect to the **uniform convergence**. Prove that F is **equibounded** and **equicontinuous**. Namely, prove that:

(i) **Equibounded**. There exists R > 0 such that

 $|f(x)| \le R$

for all $f \in \mathcal{F}$, and all $x \in X$;

(ii) **Equicontinuous**. For each $\epsilon > 0$, it is possible to find $\delta > 0$ such that

 $|f(x) - f(y)| < \epsilon$

for all $x, y \in X$ with $d(x, y) < \delta$, and all $f \in \mathcal{F}$.

Proof

(i) Suppose not, then

$$\forall n \in \mathbb{N} : \exists x_n \in X : \exists f_n \in \mathcal{F} : |f_n(x_n)| \ge n$$

Since \mathcal{F} is compact, we can extract a subsequence $f_{n_k}|$ such that $f_{n_k}| \to f \in \mathcal{F}$ uniformly, and we can extract a further sequence such that $x_{n_{k_l}} \to x \in X$. Since it still holds that $|f_{n_{k_l}}(x_{n_{k_l}}) \ge n_{k_l} \ge l$, we can assume w.l.o.g. that $(f_n)_n$ and $(x_n)_n$ are already convergent to f, x. Then, since $f_n \to f$ uniformly, it follows that we can take limits simultaneously:

$$\lim_{n \to \infty} f_n(x_n) = f(x)$$

So $(f_n(x_n))_n$ is a **bounded** sequence. But this is a contradiction with $|f_n(x_n)| \ge n, \ \forall n \in \mathbb{N}$

(ii) Suppose not. Then there is an $\epsilon > 0$ such that:

$$\forall n \in N : \exists x_n, y_n \in X, \ f_n \in \mathcal{F} : |y_n - x_n| < \frac{1}{n} \text{ and } |f_n(x_n) - f_n(y_n)| \ge \epsilon$$

We can w.l.o.g. take subsequences that converge since $|x_{n_k} - y_{n_k}| < \frac{1}{n_k} \leq frac_{1k}$, i.e. the statement still holds after having taken a subsequence $(\frac{1}{n_k} \leq \frac{1}{k}$ since the sublabelling $k \mapsto n_k$ is strictly increasing by definition). So assume that $f_{\pi} \xrightarrow{C^0} f \in \mathcal{F}$ $x_{\pi} \to x$ $u_{\pi} \to u$. Since $|x_{\pi} - u_{\pi}| < \frac{1}{2}$

So assume that $f_n \xrightarrow{C^0} f \in \mathcal{F}$, $x_n \to x \ y_n \to y$. Since $|x_n - y_n| < \frac{1}{n}$, we can conclude y = x, so they converge to the same limit. This implies, again, that we can take the limit simultaneously:

$$\lim_{n \to \infty} f_n(x_n) = f(x) \quad \lim_{n \to \infty} f_n(y_n) = f(x)$$

Now, the difference $f_n(x_n) - f_n(y_n)$ then also converges as $n \to \infty$, namely to the difference f(x) - f(x) = 0. By continuity of the norm, $|f_n(x_n) - f_n(y_n)|$ also converges, and:

$$\lim_{n\to\infty} |f_n(x_n) - f_n(y_n)| = 0$$

Which contradicts $\forall n \in \mathbb{N} : |f_n(x_n) - f_n(y_n)| \ge \epsilon > 0$

Exercise 3 Let $X = C^{1}([a, b])$, and consider the C^{1} norm on it, defined as

$$|f|_{C^1} := |f|_{C^0} + |f'|_{C^0}$$

, Prove that a family of functions $\mathcal{F} \subset X$ is **compact** with respect to the C^1 norm if and only if

(i) \mathcal{F} is closed

- (ii) There exists $c \in [a, b]$ such that the set $\{f(c) : f \in \mathcal{F}\}$ is bounded in \mathbb{R} ;
- (iii) The family

$$\{f': f \in F\} \subset C^0([a,b])$$

is equibounded and equicontinuous.

Proof

 \implies Any compact set is closed, so if \mathcal{F} is C^1 -compact, then it is C^1 -closed (i).

Moreover, Since $|\cdot|_{C^1} = |\cdot|_{C^0} + |\frac{d}{dx} \cdot |_{C^0}$, it follows that for a sequence to converge in C^1 -norm, it has to be convergent in C^0 norm and its derivative should be convergent in C^0 -norm (since the norms are nonnegative so they should go to 0 separately). This implies that \mathcal{F} is C^0 -compact, hence by using Ascoli-Arzelà it follows that $\forall x \in [a,b] : \{f(x) : f \in \mathcal{F}\}$ is compact, so in particular bounded, so there is certainly a $c \in [a,b]$ so that $\{f(c) : f \in \mathcal{F}\}$ is bounded (ii).

Finally, $\mathcal{F}' := \{f' : f \in \mathcal{F}\}\$ is compact, since if $(g_n)_n$ is a sequence in \mathcal{F}' , we can consider a sequence $(f_n)_n$ in \mathcal{F} such that $f'_n = g_n$, then extract a C^1 -convergent subsequence to an $f \in \mathcal{F}$ and observe that by $f_n - f|_{C^1} \to 0$, we also have $|g_n - f'|_{C^0} \to 0$ and since $f' \in \mathcal{F}$, conclude that we found a convergent subsequence of g_n that converge in C^0 -norm to a function in \mathcal{F}' . By Ascoli-Arzelà, we can conclude that \mathcal{F}' must therefore be **equibounded** and **equicontinuous** (iii).

$$f_n(x) = f_n(c) + \int_c^x f'_n(s)ds$$

Where the convention is that if x < c, then $\int_c^x := -\int_x^c$. Define $f \in C^1$

through $f(x) = y + \int_c^x g(s) ds$. Then,

$$\begin{aligned} 0 &\leq |f_n - f|_{C^1} = \left| f_n(c) - y + \int_c^x (f'_n(s) - g(s)) ds \right|_{C^0} + |f'_n - g|_{C^0} \\ &\leq |f_n(c) - y| + \left| \int_c^x (f'_n(s) - g(s)) ds \right|_{C^0} + |f'_n - g|_{C^0} \\ &\leq |f_n(c) - y| + \sup_{x \in [a,b]} \left| \int_c^x |f'_n(s) - g(s)| ds \right| + |f'_n - g|_{C^0} \\ &\leq |f_n(c) - y| + \sup_{x \in [a,b]} \left| \int_c^x |f'_n - g|_{C^0} ds \right| + |f'_n - g|_{C^0} \\ &= |f_n(c) - y| + \sup_{x \in [a,b]} |c - x| \cdot |f'_n - g|_{C^0} + |f'_n - g|_{C^0} \\ &\leq |f_n(c) - y| + |b - a| \cdot |f'_n - g|_{C^0} + |f'_n - g|_{C^0} \end{aligned}$$

And since this is just a linear combination of two sequences that converge to 0 (by the extraction of appropriate subsequences), it follows that we can bound this from above by any $\epsilon > 0$ if we choose $n \ge N$ sufficiently large, so $f_n \xrightarrow{C^1} f$ as $n \to \infty$. All that is left is to show $f \in \mathcal{F}$, but this follows by the premise that \mathcal{F} is C^1 -closed and $f_n \xrightarrow{C^1} f$. Therefore $f \in \mathcal{F}$.