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1 Continuous Functions

By convention (X, dX) and (Y, dy) are metric spaces, with metrics dX , dY , unless
otherwise specified. In RN , we will denote the i-th standard basis vector as ei.

1.1 Continuity in Metric Spaces and Topological Spaces

Definition 1. f : X → Y is called

(i) separately continuous at b ∈ X if X = RN , if t 7→ f(b+ tei) is contin-
uous for every i = 1, ..., N .

1. linearly continuous at b if X = RN , and if t 7→ f(b+ tv) is continuous
for every vector v ∈ RN .

2. topologically continuous at b ∈ X, for general topological spaces (X, TX),
(Y, TY ), if:

∀A ∈ TY : f(b) ∈ A : ∃B ∈ TX : b ∈ B ∧ f(B) ⊂ A

3. sequentially continuous at b, in general topological spaces(X, TX), (Y, TY ),
if:

∀(xn)n∈N ⊂ X : lim
n→∞

xn = b : lim
n→∞

f(xn) = f(b)

Proposition 1. In metric spaces X,Y , the notion of sequential continuity and
topological continuity at b are equivalent and are equivalent to:

∀ϵ > 0 : ∃δ > 0 : f(Bδ(x)) ⊂ Bϵ(f(b))

Proposition 2. Topological continuity on every point of X is equivalent to:

∀A ⊂ Y : A open : f−1(A) is open

Remark 1. In general topological spaces, continuity implies sequential conti-
nuity, but not the other way around.
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Proposition 3. dX is sequentially continuous:

∀(xn)n, (yn)n ⊂ X : xn → b, yn → ȳ =⇒ dX(xn, yn) → d(b, ȳ)

Proposition 4. Let K ⊂ X compact and f : X → Y continuous: then f(K) ⊂
Y is compact. This holds for general topological continuity.

Proof. The simple proof of this is as follows: let {Aα}α∈I be an open cover
of f(K). Then {f−1(Aα)}α∈I is an open (by topological continuity every pre-
image is open) cover of K, so pick a finite subcover {f−1(Ai)}Ni=1 that covers
K. Then

N⋃
i=1

Ai =

N⋃
i=1

f(f−1(Ai)) = f(

N⋃
i=1

f−1(Ai)) ⊃ f(K)

So we have found a finite subcover for f(K).

Theorem 1. Let f : X → R be a continuous function and K ⊂ X be compact.
Then f assumes a maximum and minimum value on K, meaning f(K) ⊂ R
has a maximum and minimum.

Proposition 5. Let f : X → Y continuous and Sy = {x ∈ X : f(x) = y}, for
some y ∈ Y . Then Sy is closed.

Moreover if Y = R with the Euclidean metric, then:

S<
y = {x ∈ X : f(x) < y}, S>

y = {x ∈ X : f(x) > y}

are open.

Proposition 6. Let f : X → Y be continuous at x ∈ X, and g : Y → Z
continuous at f(x) ∈ Y . Then g ◦ f : X → Z is continuous at x

Proof. Again, a general topological result: let A ⊂ Z be open and containing
g(f(x)), then we know that there is an open subset B of Y such that g(Y ) ⊂ A
and f(x) ∈ B. Now do the same for B to obtain an open set Ω ⊂ X containing
x and g(f(Ω)) ⊂ g(A) ⊂ B

Proposition 7. If f, g : X → V are continuous, and V is a normed vector
space. Then λf + g : X → R is also continuous.

Proposition 8. For f, g : X → R continuous, the pointwise defined

max{f, g}, min{f, g} : X → R

are continuous. For a (possibly uncountable) collection {fα}α∈I , also the point-
wise defined

inf
i∈I

fi, sup
∈I

fi

are continuous (if they exist: we only define them if, for each x ∈ X, that
{fi(x) : i ∈ I} is bounded), as well as f · g, f

g as long as the division is well-

defined, meaning g(X) ̸∋ 0.
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Proof. Fix x ∈ X and ϵ > 0. Let (xn)n∈N be an arbitrary sequence converging
to x. Let f := supα fα. We need to prove f(xn) → f(x).

First, use the supremum property: let α ∈ I such that for this x ∈ X, we
have:

f(x)− ϵ < fα(x) ≤ f(x) in R
By continuity of fα, there is an N ∈ N with ∀n ≥ N : |fα(xn)− fα(x)| < ϵ

For those n, we therefore have:

f(x)− 2 · ϵ < f(xn) < f(x) + ϵ

Which implies we have succesfully approximated f(xn) for n ≥ N :

|f(x)− f(xn)| < 2 · ϵ
The proof for the infinimum is almost the same, of course.

Remark 2. Let’s look at an example for an uncountable index set I:

fy(x) :=
xy2

x2 + y2
, y ∈ R

Then

sup
y∈R

fy(x) =

{
0, x ≤ 0
x, x > 0

It is continuous.

1.2 Uniform Continuity and Lipschitz Continuity

Definition 2. A function f : X → Y is called uniformly continous on X if

∀ϵ > 0 : ∃δ > 0 : ∀x ∈ X : f(Bδ(x)) ⊂ Bϵ(f(x))

Lemma 1. Let f : K → Y be defined on a compact metric space K. Then f
is continuous if and only if it is uniformly continuous

Proof. (Sketch) Fix, for each x ∈ K and ϵ > 0 a δx > 0 such that ∀y ∈ Bδx(x)
we have dY (f(x), f(y)) < ϵ. Then cover K not with δx-balls but with

1
2δx-balls:

{B 1
2 δx

(x) : x ∈ K}

Is a cover for K. Use this to extract a subcover

{B 1
2 δi

(xi)}Ni=1

We can take the minimum of a finite set. Assume w.l.o.g. that δ1 = mini=1,...,N δi.
Conclude that if dX(y, z) < 1

2δ1, and by coverage x ∈ B 1
2 δi

(xi), for some i,
then:

dX(z, xi) ≤ dX(z, x) + dX(xi, x) <
1

2
δ1 +

1

2
δi < δi

Therefore y, z ∈ Bδi(xi) for some i by the triangle inequality, and we conclude
dY (f(z), f(y)) < ϵ. We find 1

2δ1 to be the appropriate delta.
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An equivalent definition of uniform continuity, is that f admits a modulus
of continuity:

Definition 3. A modulus of continuity for a function f : X → Y is a
function ω : [0,∞) → [0,∞) that:

• is non-decreasing. ∀st : t ≥ s =⇒ ω(t) ≥ ω(s)

• is right-continuous at 0 with limt↓0 ω(t) = ω(0) = 0

• satisfies
dY (f(x), f(x̃)) ≤ ω(dX(x, x̃))

Interesting (somewhat esoteric) fact: By its properties, ω is itself also uni-
formly continuous.

Proposition 9. If (fn)n is a sequence of functions that all admit the same
modulus ω, and such that ∀x ∈ X : fn(x) → f(x) for some f : X → Y
(pointwise convergence). Then ω also is a modulus of continuity for f

Proof. This follows from the fact that for fixed x, y ∈ X:

∀i ∈ N : dY (fi(x), fi(y)) ≤ ω(dX(x, y))

And we simply take the limit and preserve the inequality.

Proposition 10. If (fi)i∈I is any (possibly uncountable) collection of functions
that all admit the same modulus ω. Then

inf
i∈I

fi sup
i∈I

fi

also admit that modulus.

Proof. Again, we have for fixed x, y ∈ X:

∀i ∈ I : dY (fi(x), fi(y)) ≤ ω(dX(x, y))

Therefore, we can take the supremum over I (which may be uncountable now):

dY

(
sup
i∈I

fi(x), sup
i∈I

fi(y)

)
≤ sup

i∈I
dY (fi(x), fi(y)) ≤ ω(dX(x, y))

Showing that ω is a modulus of continuity for supi∈I fi.

Definition 4. f : X → Y is called Lipschitz continuous if it admits a linear
modulus of continuity ω ∈ L(R,R). The constant L > 0 such that ω(·) = L·,
is called its Lipschitz constant

Since a linear modulus of continuity is also a modulus of continuity, we can
conclude:
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Proposition 11. A collection {fi}i∈I of Lipschitz continuous functions sharing
the same Lipschitz constant is closed under pointwise convergence, and
taking suprema/infinima.

Definition 5. More generally, a function f : X → Y is called α-Hölder
continuous if it has a modulus of continuity that is a power relation ω(t) = Ltα,
where α > 0.

If α = 0, then the function is bounded. If α > 1 and X = RN , we can show
that f is constant.

1.3 Pointwise and Uniform convergence

Definition 6. (fn)n a sequence of functions fn : X → Y is said to converge
pointwise to f : X → Y if

∀x ∈ X : (fn(x))n converges to f(x) in X

Definition 7. (fn)n a sequence of functions fn : X → Y is said to converge
uniformly to f : X → Y if the Nϵ can be picked independently of x:

∀ϵ > 0 : ∃N ∈ N : ∀n ≥ N : ∀x ∈ X : dy(fn(x), f(x)) < ϵ

We can equivalently say that fn → f with respect to the the uniform
metric

d∞(f, g) := sup
x∈X

dY (f(x), g(x))

But this is only well-defined once we show that d∞ is a metric, i.e. we require
f(X) to be bounded for all f in a certain function space. See Chapter 4.

We also call d∞ the supremum metric, uniform norm or even supremum
norm, depending on whether the space Y is a normed space or not.

Proposition 12. Uniform convergence preserves continuity: i.e. if ∀n ∈ N :
fn is continuous at x ∈ X, then f is also continuous at x ∈ X if fn → f
uniformly.

Proof. We use the triangle inequality:

dY (f(x), f(y)) ≤ dY (fn(x), f(x)) + dY (fn(y), f(y)) + dY (fn(x), fn(y))

Which we can bound by ϵ if n ≥ N 1
3 ϵ

and dX(x, y) < δ 1
3 ϵ
. We have to use

uniform contuity since we have to bound dY (fn(x), f(x)) and dY (fn(y), f(y))
simultaneously for arbitrary y ∈ Bδ 1

3
ϵ
(x).

Proposition 13. Using almost exactly the same proof, one can show that uni-
form convergence preserves uniform continuity.

A more interesting fact:
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Proposition 14. Let (fn)n a sequence of functions fn : X → Y with uniform
convergence to a continuous function f : X → Y . Note that we don’t assume
any fn to be continuous. Now, if xn → x for some sequence (xn)n ⊂ X, we get:

fn(xn) → f(x)

Proof. Not actually very surprising: we can pickN large enough that dX(xn, x) ≤
δϵ where δϵ is s.t. f(Bδϵ(x)) ⊂ Bϵ(f(x)). Next, pick N large enough so that
d∞(fn, f) < ϵ. Then use some triangle inequality magic:

dY (fn(xn), f(x)) ≤ dY (f(xn), f(x)) + dY (fn(xn), f(xn)) < 2ϵ

The reason that this proof fails if fn → f only pointwise, is that we cannot
bound the term dY (fn(xn), f(xn)), because we don’t know how large N should
be, because we cannot pick it uniformly: it may depend on xn. And that is also
the strategy if you wanted to find a counterexample.

The possibility to take the limit of an argument sequence simultaneously
with the limit of the function sequence, characterizes uniform convergence of
the function sequence, provided X is compact:

Proposition 15. Let (fn)n be a sequence of functions X → Y , where X,Y are
metric spaces. If:

(i) X is compact.

(i) There is a function f : X → Y such that: for all sequences (xn)n ⊂ X
that are convergent, with xnrab, we have that (fn(xn))n is convergent
and converges to f(b)

Then fn → f uniformly.

Proof. Homework, Exercise 3.

We repeat two theorems regarding uniformly continuous functions and Rie-
mann integrability from Analysis 1:

Proposition 16. Uniformly continuous real functions f on compact sets
K, i.e. f : K → R are Riemann integrable, and thus also are continuous
functions on compact sets.

Proposition 17. For (fn)n a sequence of uniformly continuous scalar func-
tions on a compact set K ⊂ R, converging uniformly to f , then f is uniformly
continuous, hence Riemann integrable and:

lim
n→∞

∫
K

fn(x)dx =

∫
K

f(x)dx

Note that this writes as:

lim
n→∞

∫
K

fn(x)dx =

∫
K

(
lim
n→∞

f(x)
)
dx
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As a consequence (using the fundamental theorem of calculus):

Proposition 18. Let (fn)n be a sequence of scalar, differentiable functions
fn : I → R, defined on an interval I ⊂ R, which converges pointwise to a
function f : I → R and whose derivatives (f ′

n)n converge uniformly to a
g : I → R. Then f is differentiable and f ′ = g.

1.4 Dini’s theorem

Definition 8. A sequence (fn)n∈N of scalar functions fn : X → R on a set X.
Is said to be increasing if

∀x ∈ X : ∀n ∈ N : fn(x) ≤ fn+1(x)

And we say (fn)n∈N is strictly increasing if the inequality is strict. We can define
decreasing and strictly decreasing likewise. Further, if (fn)n either decreasing
or increasing, we call the sequence monotone.

Theorem 2. Dini’s Theorem
Let (X, d) be a metric space, and X compact. Let (fn)n∈N be a monotone

sequence of continuous functions fn : X → R, that converges pointwise
to a function f : X → R. Then the convergence is uniform.

Proof. W.l.o.g., assume monotone means increasing. For decreasing sequences,
consider −fn and −f . Then, we define gn : f − fn and show gn → 0 uniformly.

Let En ⊂ X be defined as:

En := {x ∈ X : gn(x) < ϵ}

By continuity of gn, we know En is open, and by pointwise convergence, we
know

∀x ∈ X : ∃N ∈ N : ∀n ≥ N : x ∈ En

And by monotonicity of the fn, if x ∈ En, then fn+1(x) ≤ fn(x) < ϵ, hence En ⊂
En+1. Therefore, En is an ascending sequence: En ⊂ En+1, and moreover
En ↑ X, meaning ⋃

n∈N
En = X

An open cover of X has a finite subcover, so we can find N1, ...Nk with

k⋃
i=1

ENi
= X

Setting N := Nk, we see X = EN , meaning ∀n ≥ N : ∀x ∈ X : gn(x) < ϵ We
conclude that N is uniform in x ∈ X, and this can be done for each ϵ > 0.
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Remark 3. Why can we not do this for arbitrary compact X, continuous fn
and continuous f , setting gn(x) := |fn(x)− f(x)|? In other words, can we drop
monotonicity?

To see the problem, consider the following counterexample: n, f : [0, 1] → R,
where f = 0 and

fn(x) :=


nx if 0 ≤ x ≤ 1

n

2− nx if 1
n < x ≤ 2

n

0 if 2
n < x ≤ 1

Here, we have the following level sets:

En =

{
x : x ≤ 1

n
and nx ≤ ϵ, or x >

1

n
and 2− nx < ϵ, or x >

2

n

}
=

[
0,

max(1, ϵ)

n

)
∪
(
min(2− ϵ, 1)

n
, 1

]
That is, for ϵ = 1

2 , we get:

En =

[
0,

1

2n

)
∪
(

3

2n
, 1

]
Or, maybe more clarifying, is the case ϵ = 1:

En = [0, 1]\
{
1

n

}
This shows that, indeed, for each x ∈ [0, 1] there is an N such that x ∈ En, ∀n ≥
N (indeed this holds for all x except those of the form 1

k , k ∈ N, and for such
x we have x ∈ En, ∀n ≥ k + 1). But we need monotonicity of (gn)n∈N =
(x 7→ |fn(x) − f(x)|)n∈N to conclude that En ⊂ En+1, which is not the case
here. Therefore, we can indeed say, for any ϵ > 0,⋃

n∈N
En = [0, 1]

And surely we can for any ϵ > 0, extract a finite subcover En1
, ..., EnN

. But
since (En)n∈N is not ascending, we cannot conclude that EnN

= X, and in this
case, we can never find an N such that EN = X. This shows that monotonicity
is a strictly necessary premise.

2 Homework

Exercise 1 Let (X, d) be a metric space, and let E ⊂ X be a set. Consider
the function f : X → R defined as

f(x) := d(x,E)
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where the distance of the point x ∈ X to the set E is defined as

d(x,E) := inf{d(x, y) : y ∈ E}.

Prove that f is continuous.

Proof If E is nonempty, then f is, firstly, well-defined since {d(x, y) : y ∈ E}
is bounded from below by 0, by definiteness of the metric d.

Now, let (xn)n∈N be any sequence in X such that limn→∞ xn exists, say it
is x ∈ X. We need to show that limn→∞ f(xn) = f(x)

Note that for any z ∈ E, it holds by using the triangle inequality, that:

d(xn, z) ≤ d(xn, x) + d(x, z)

d(x, z) ≤ d(xn, x) + d(xn, z)

In particular, taking the infinimum on both sized over all z ∈ E (which can be
done since d(y, z) is bounded from below by 0):

d(xn, E) ≤ d(xn, x) + d(x,E) =⇒ d(xn, E)− d(x,E) ≤ d(xn, x)

d(x,E) ≤ d(xn, x) + d(xn, E) =⇒ d(x,E)− d(xn, E) ≤ d(xn, x)

This implies the inequality

0 ≤ |d(xn, E)− d(x,E)| ≤ d(xn, x), or: 0 ≤ |f(x)− f(xn)| ≤ d(xn, x)

Now, since xn → x, this means precisely d(xn, x) → 0 as n → ∞. By the
above and the squeeze theorem, it follows that |f(x)− f(xn)| converges to 0.
This, by definition, means f(xn) → f(x), so f is sequentially continuous (hence
continuous).

Exercise 2 Let F : C1
p([0, 1]) → C1

p([0, 1]) be the identity map, where C1
p([0, 1])

is the space of functions that are piecewise C1. Namely, f ∈ C1
p([0, 1]) if and

only if f ∈ C0([0, 1]), and there are finitely many points 0 = x0 < x1 < x2 <
... < xk = 1 ∈ [0, 1] such that

f ∈ C1((xi, xi+1)) for all i = 0, ..., k − 1

Endow the domain of F with the C0 norm and the codomain of F with the C1

norm. Prove that the identity is not continuous.

Proof This means that we need to find a sequence of function fn ∈ C1
p([0, 1])

such that fn → f ∈ C1
p([0, 1]) in C0-norm but not in C1-norm. Since |f−h|C1 =

|f − h|C0 + |f ′ − h′|C0 , this means that |f ′ − f ′
n|C0 > ϵ for some ϵ > 0. For

example,

fn(x) :=
sinnx

n

Which has uniform limit 0 ∈ C1
p([0, 1]) (the zero function, which is C∞([0, 1]),

because |fn − 0|C0 = 1
n supx∈[0,1] | sinnx| = 1

n → 0 as n → ∞. But for its
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derivative, f ′
n(x) = cos(nx), we have |f ′

n − 0|C0 = supx∈[0,1] | cosnx| = 1, which
does not converge to 0 as n → ∞.

Hence,

lim
n→∞

|fn − 0|C0 = 0, but lim
n→∞

|F (f)− F (0)|C1 = 1 > 0

So that fn
C0

−−→ yet F (fn) ̸ C
1

−−→ F (0), showing that F is not continuous every-
where on C1

p([0, 1]).

Exercise 3 Let (fn)n∈N be a sequence of functions from two metric spaces
(X, dX) and (Y, dY ), and let f : X → Y be a continuous function. Then:

(i) Assume that (fn)n∈N converges uniformly to f : X → Y . Prove that

lim
n→∞

fn(xn) = f(x)

for every x ∈ X and every sequence of points (xn)n∈N ⊂ X with xn → x;

(ii) Find a counterexample in the case the convergence is only pointwise, but
not uniform;

(iii) Assume that X is compact. Assume that

lim
n→∞

fn(xn) = f(x)

for every x ∈ X and every sequence of points (xn)n∈N ⊂ X with xn → x.
Show that (fn)n∈N converges uniformly to f .

Proof

(i) Let ϵ > 0. We can, by uniform convergence of (fn)n∈N, find an N1 ∈ N
such that for all n ≥ N :

∀z ∈ X : dY (fn(z), f(z)) < ϵ

In particular, for all n ≥ N

dY (fn(xn), f(xn)) < ϵ

By continuity of f and the fact that (xn)n∈N converges to x, it follows
that f(xn) converges to f(x), so that we can also find an N2 ∈ N such
that for all n ≥ N2:

dY (f(xn), f(x)) < ϵ

Combining this information, for N = max{N1, N2}, for all n ≥ N , we
have:

dY (fn(xn), f(x)) ≤ dY (fn(xn), f(xn)) + dY (f(xn), f(x)) < 2ϵ

Where the inequality is just the triangle inequality for the metric dY .
This, by definition, means that dY (fn(xn), f(x)) → 0 as n → ∞, or
fn(xn) → f(x) as n → ∞.
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(ii) Define fn : [0, 1] → R as:

fn(x) :=

{
xn x ∈ [0, 1)
0 x = 1

We see that fn is discontinuous, but it converges to 0 pointwise, which
is continuous. The convergence is not uniformly since for any n ∈ N,
|fn−0|C0 = supx∈[0,1) |xn| = 1 which does not converge to 0. Now consider

the sequence (1 − 1
n )n∈N. This sequence converges in [0, 1], namely to 1.

Yet,

lim
n→∞

fn(xn) = (1− 1

n
)n = e−1, while 0(1) = 1

So this is a counterexample.

(iii) An argument by contradiction: Suppose that (fn)n∈N does not converge
uniformly to f . The negation of the statement ”converges uniformly” is:

∃ϵ > 0 : ∀N ∈ N∃n ≥ nN : ∃xN ∈ X : dY (fnN
(xN ), f(x)) ≥ ϵ

So pick this ϵ and let (fnk
)k∈N, (xn)n∈N be defined in this way. Since

(xn)n∈N ⊂ X and X is compact, we can assume without loss of generality
that (xn)n∈N converges to a limit a ∈ X, since else we can find a subse-
quence (xnk

)k∈N that converges to a limit a ∈ X, that also satisfies, for
(xnlk

)k∈N the further subsequence of f , dY (fnlk
(xnk

), f(x)) ≥ ϵ.

Next, the triangle inequality gives:

dY (fn(xn), f(x)) + dY (f(xn), f(x)) ≥ dY (fn(xn), f(xn)) ≥ ϵ

Taking the limit on both sides, which we can do since limn→∞ fn(xn) =
f(x) and f is continuous, so limn→∞ f(xn) = f(x), we get:

0 + 0 ≥ ϵ > 0, a contradiction.

11


