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1 Structures on Spaces

Discusses topological spaces, metric spaces, normed spaces, inner product spaces.
Spaces with a norm or inner product are always vector spaces, since the norm/inner
product interacts with addition and scalar multiplication. We will next define
convergence in metric spaces and see what this definition translates to in the
other spaces.

1.1 Inner Product Spaces

Definition 1. An inner product space is a tuple (X, ⟨·, ·⟩) where X is an
K-vector space over C or R, and ⟨·, ·⟩ : X ×X → R≥0 is a scalar product, a
bifunction that satisfies:

1. sequilinearity: ∀λ, x, y : ⟨λx + y, z⟩ = λ⟨x, z⟩ + ⟨y, z⟩ and ∀λ, x, y, z :
⟨z, λx+ y⟩ = λ⟨z, x⟩+ ⟨z, y⟩

2. sequisymmetry: ∀x, y, z : ⟨x, y⟩ = ⟨y, z⟩

3. definiteness: ∀x : ⟨x, x⟩ ≥ 0 and ∀x : ⟨x, x⟩ = 0 ⇐⇒ x = 0. Note that
this is well-defined since ⟨x, x⟩ ∈ R is by sequisymmetry.

Proposition 1. In scalar product spaces, the following identities hold:

1. the Pythagorean theorem:

⟨v, w⟩ = 0 =⇒ ⟨v − w, v − w⟩ = ⟨v, v⟩+ ⟨w,w⟩

2. the parallelogram law:

2⟨v, v⟩+ 2⟨w,w⟩ = ⟨v − w, v − w⟩+ ⟨v + w, v + w⟩

3. the Cauchy-Schwarz inequality:

|⟨x, y⟩|2 ≤ ⟨x, x⟩⟨y, y⟩
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1.2 Normed spaces

Definition 2. A normed space is a tuple (X, | · |), where X is an K-vector
space and | · | : X → R≥0 is a norm, a function that satisfies:

1. definiteness ∀x : |x| = 0 ⇐⇒ x = 0

2. triangle inequality ∀xy : |x+ y| ≤ |x|+ |y|

3. homogeneity ∀λ ∈ K : ∀x : |λx| = |λ||x|

Proposition 2. If (X, ⟨·, ·⟩) is a scalar product, then | · | : X → R defined
through

|x| := ⟨x, x⟩ 1
2

is a norm.

Remark 1. A norm gives a notion of length, while an inner product gives a
notion of angle, or similarity.

Proposition 3. Given a normed space (X, | · |), if the parallelogram law

∀vw : 2|v|2 + 2|w|2 = |v + w|2 + |v − w|2

holds, then there is a scalar product that induces that norm. In particular,
it is given by

⟨v, w⟩ = 1

4
(|v + w|2 − |v − w|2)

And the parallellogram law for the inner product reads:

∀vw : 2⟨v, v⟩+ 2⟨w,w⟩ = ⟨v + w, v + w⟩+ ⟨v − w, v − w⟩

Definition 3. The unit ball of a norm | · |, B|·|, is defined as the set

B|·| = {x ∈ X : |x| < 1}

Lemma 1. For any two norms | · |1, | · |2, we have:

| · |1 = | · |2 ⇐⇒ B|·|1 = B|·|2

Lemma 2. In any normed space (X, | · |), B|·| is convex and symmetric with
respect to the origin:

∀0 ≤ λ ≤ 1, x, y ∈ B|·| : λx+ (1− λ)y ∈ B|·|

∀x : x ∈ B|·| ⇐⇒ −x ∈ B|·|

Proposition 4. In RN , given B ⊂ RN , a bounded set that is

1. convex: ∀x, y ∈ B, λ ∈ [0, 1] : λx+ (1− λ)y ∈ B
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2. symmetric with respect to 0, i.e. ∀x : x ∈ B ⇐⇒ −x ∈ B

3. not contained in any k-dimensional linear space with k < N

There exists a unique norm | · | so that B is the closure of its unit ball B|·|. In
particular, it can be constructed as:

|x| = min{λ > 0 :
1

λ
x ∈ B}

We can define the crystalline norms this way, for example. These are
norms defined as the unique norm arising from a polytope B that is convex and
symmetric with respect to 0.

1.3 Metric spaces

Definition 4. A metric space is a pair (X, d) where d : X × X → R≥0 is
called a metric and satisfies:

1. positivity: ∀x, y ∈ X : d(x, y) = 0 ⇐⇒ x = y

2. symmetry: ∀x, y ∈ X : d(x, y) = d(y, x)

3. triangle inequality: ∀x, y, z ∈ X : d(x, y) ≤ d(x, z) + d(y, z)

Lemma 3. If (X, | · |) is a normed space, then d : X×X → R through d(x, y) =
|x− y| is a metric.

We can also say something about the converse for metrics:

Proposition 5. For (X, d) a metric space and X a vector space, d comes from
a norm if and only if it is:

1. homogenous: ∀λ, x, y : d(λx, λy) = |λ|d(x, y)

2. translation invariant: ∀x, y, z : d(x+ z, y + z) = d(x, y)

Lemma 4. In an inner product space, this reads as d(x, y) = ⟨x− y, x− y⟩ 1
2

Lemma 5. If (X, d) is a metric space, and A ⊂ X, then (A, d|A) is a metric
space.

Proposition 6. for X,Y metric spaces with dX , dY , we can make X × Y into
a metric space with metric dXY by setting

dXY ((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

The so-called product metric.

Remark 2. Given the Euclidean metric x, y 7→ |x − y| on R, where | · | is the
absolute value, repeating product metric as defined above, will give the Man-
hattan distance on Rn.
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Proposition 7. For countable products of metric spaces (Xi, di), i ∈ N, we can
also construct a metric on

∏∞
i=1 Xi as follows:

d(x, y) =
∑
i∈N

di(xi, yi)

2i[1 + di(xi, yi)]

Definition 5. For (X, d) a metric space, x ∈ X and r > 0, we define the open
ball of center x and radius r as:

Br(x) = {y ∈ X : d(x, y) < r}

Definition 6. A set A ⊂ X is said to be open when

∀x ∈ A : ∃r > 0 : Br(x) ⊂ A

Equivalently, if there is a collection C of open balls such that
⋃

C = A

Definition 7. A set C ⊂ X is called closed if its complement in X, Cc = XC,
is open.

Lemma 6. Defining open and closed sets in this way gives open and closed sets
the following properties: if we let T denote the collection T ⊂ 2X of all open
sets, we have

1. ∅ and X are open.

2. T is closed under unions : C ⊂ T =⇒
⋃
C ∈ T .

3. T is closed under finite intersection: O1, ..., Ok ∈ T =⇒
⋂k

i=1 Oi ∈ C

We will now proceed with the concept of metric convergence before revisiting
the above lemma with the definition of a topological space.

1.4 Convergence in metric spaces

Definition 8. A sequence (xn)n∈N, (or (xn)
∞
n=0, (xn)

∞
n=1 is a function N → X.

We also denote (xn)n∈N ⊂ A if ∀n ∈ N : xn ∈ A. This is slight abuse of the
subset notation, although one might also call it ”overloading ⊂ for functions”.

Definition 9. We say that a real sequence (xn)n∈N ⊂ R converges to L ∈ R
if:

∀ϵ > 0 : ∃N ∈ N : ∀n ≥ N : |xn − L| < ϵ

Definition 10. We say that a sequence (xn)
∞
n=1 ⊂ X , metrically converges to

an x ∈ X if
lim
n→∞

d(x, xn) = 0

We also use the notation xn → x.

Remark 3. In a normed space, this reads as limn→∞ |xn − x| = 0. And in an
inner product space, it reads as limn→∞⟨x− xn, x− xn⟩ = 0.

4



Lemma 7. If (xn)n∈N is a sequence in a metric space (X, d) that converges to
a ∈ X, and to b ∈ X, then a = b.

Definition 11. A subsequence u = (xnk
)k∈N of a sequence v = (xn)n∈N is

a sequence N → X that can be obtained by the composition u = v ◦ n where
n : N → N is a function k 7→ nk that is strictly increasing.

Remark 4. All sequences over a set, together with the relation ⊂ meaning ”is
subsequence of”, form a partially ordered set.

Proposition 8. If a sequence converges to a limit l ∈ X, then all its subse-
quences converge, and they converge also to l

Proposition 9. The following is known as the Urysohn property: Suppose
(xn)n∈N is a sequence in a metric space (X, d), such that

∃a ∈ X : ∀subsequences (xnk
)k∈N : ∃further subsequence (xnki

)i∈N : anki
→ a

Then xn → a.

Definition 12. A sequence is called a Cauchy sequence if

∀ϵ > 0∃N ∈ N : ∀n,m ≥ N : d(xn, xm) < ϵ

Proposition 10. A convergent sequence is Cauchy.

Proposition 11. A Cauchy sequence with a convergent subsequence that con-
verges to l ∈ X is convergent, namely to l

Definition 13. The sequential closure of a set Y ⊂ X in a metric space
(X, d) is defined as:

Y
d
:= {a ∈ X : ∃(an)n ⊂ Y : an →d a}

1.5 Topological spaces

Definition 14. A topological space is a pair (X, T ), where we call T ⊂ P (X)
the open sets of X, and T satisfies:

1. ∅ and X are open.

2. T is closed under unions : C ⊂ T =⇒
⋃
C ∈ T .

3. T is closed under finite intersection: O1, ..., Ok ∈ T =⇒
⋂k

i=1 Oi ∈ C

Remark 5. The mentioned unions can be uncountable.

Remark 6. As seen in the lemma, the metric notion of open and closed sets
defines a topology on X:

Td = {U ⊂ X | ∃I : ∀i ∈ I : ∃xi ∈ X, ri > 0 : U = ∪i∈IBr(x), }

Or, equivalently:

Td = {U ⊂ X | ∀x ∈ U : ∃r > 0 : Br(x) ⊂ U}
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Definition 15. We say that a sequence (xn)
∞
n=0 where ∀n ∈ N : xn ∈ X,

topologically converges to x ∈ X if:

∀U ∈ T : x ∈ U : ∃N ∈ N : ∀n ≥ N : xn ∈ U

Definition 16. Let Y ⊂ X where (X, T ) is a topological space. The topological

closure of Y , Y
T

is the smallest closed set (i.e. a complement of an open set)

that contains Y . This notion coincides with the sequential closure Y
d
in a metric

space, if we leet T be induced by the metric d

In a topological space, the limit of a sequence is not unique. Consider the
trivial topology (X, T = {∅, X}) on any set X with |X| ≥ 2, and a periodic
sequence in X with two or more values. It is convergent to any of its values.
The reason why the notion of sequential and topological convergence coincide
in metric spaces, is because for x, we can find an open set Bϵ(x) around it for
any arbitrarily small ϵ > 0. This makes it possible to ”distinguish” between any
a, b ∈ X that are not the same: ϵ = d(a, b) > 0, and B ϵ

2
(a) ∩ B ϵ

2
(b) = ∅, so no

sequence (xn)n∈N can converge to both a and b.
We will treat topological spaces, and what it takes for a topology to be metriz-
able, in the course Topology.

2 Homework Exercises

Exercise 1 Let (X, d) be a metric space. Define B(X) = {f : X → R |
∃c ∈ R : ∀x ∈ x|f(x)| < c}. Show that | · |C0(X) : X → R defined through
|f |C0(X) := supx∈X |f(x)| is a norm on B(X).

Proof The function | · |C0(X) is well-defined since |f(X)| = {|f(x)| | x ∈ X}
is a bounded set in R. We show it satisfies the 3 properties of a norm:

1. homogeneity: For λ ∈ R, |λf | = supX |λf(x)| = supX |λ||f(x)| =
|λ| supX |f(x)| = |λ||f |, where in the third equality we use |λ| ≥ 0.

2. definiteness: |f(x)| ≥ 0 for all x ∈ X, so supX |f(x)| ≥ 0. And, if
|f | = 0, then supX |f(x)| = 0, hence ∀x ∈ X : |f(x)| ≤ 0. This implies
∀x ∈ X : f(x) = 0, so f = 0, the zero function in B(X), which is also the
zero element of B(X).

Exercise 2 Let {Ci}i∈I be a family of closed set indexed by an index set I
(possibly uncountable). Show that if J ⊂ I is finite, then⋂

i∈I

Ci

⋃
i∈J

Ci

are open.
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Proof By definition, Cc
i is open for all i ∈ I. Moreover, De Morgan’s laws

give that ⋂
i∈I

Ci =

[⋃
i∈I

Cc
i

]c ⋃
i∈J

Ci =

[⋂
i∈J

Cc
i

]c

So it is sufficient to show that if {Oi}i∈I is a collection of open sets, then
for a finite J ⊂ I ⋂

i∈J

Oi

⋃
i∈I

Oi

Are open. This is true by axiom in a topological space (X, T ). For a metric
space, we define an open set O to be a set O ⊂ X such that ∀x ∈ O : ∃r > 0 :
Br(x) ⊂ O.

Then, if J ⊂ I is finite, and all Oi are open, take a
⋂

i∈J Oi. For each i,
there is an ri > 0 such that Bri(x) ⊂ Oi. If we let r = mini∈J ri, which is
well-defined since J is finite, then we see Br(x) ⊂ Bri(x) ⊂ Oi for all i ∈ J . So
there is an open ball around x with radius r > 0 that is contained in

⋂
i∈J Oi.

So
⋂

i∈J Oi is open.

Exercise 3

(i) Let (X, dX), (Y, dY ) be metric spaces. Show that (X × Y, d) where d :
(X × Y )× (X × Y ) → R, defined through d((x, y), (x′, y′)) := dX(x, x′) +
dY (y, y

′), is a metric space.

(ii) Show that X =
∏∞

i=1 R, endowed with d : X ×X → R defined through

d(a, b) :=

∞∑
i=1

|ai − bi|
2i[1 + |ai − bi|]

is a metric space. First show that d is well-defined (i.e. the series on the
right converges).

Proof For (i): d satisfies the axioms of a metric:

1. definiteness: d((x, y), (x′, y′)) = dX(x, x′) + dY (y, y
′) ≥ 0 where we use

that both dX(x, x′) ≥ 0 and dY (y, y
′) ≥ 0 because these are metrics.

And, if d(x, y), (x′, y′)) = 0, then dX(x, x′) = dY (y, y
′), but since both are

nonnegative, this can only happen if dX(x, x′) = dY (y, y
′) = 0, and this

implies that x = x′ and y = y′ because dX and dY are definite.

2. symmetry: d((x, y), (x′, y′)) = dX(x, x′)+dY (y, y
′) = dX(x′, x)+dY (y

′, y) =
d((x′, y′), (x, y)), where in the second equality we use symmetry of dX and
dY separately, and in the third equality we just substitute the definition
of d.
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3. triangle inequality: For arbitrary (x′′, y′′) ∈ X×Y , we have d((x, y), (x′, y′)) =
dX(x, x′) + dY (y, y

′) ≤ dX(x, x′′) + dY (y, y
′′) + dX(x′′, x′) + dY (y

′′, y′),
where the inequality follows from the triangle inequality for dX and dY
separately. In the final formula, we can substitute the definition of d:... =
d((x, y), (x′′, y′′)) + d((x′, y′), (x′′, y′′)). This gives the required inequality.

For (ii): d(a, b) is well-defined, since |ai−bi|
1+|ai−bi| < 1 always, as t 7→ t

1+t is

bounded by [0, 1) on [0,∞). This means that for any N ∈ N,

N∑
i=1

|ai − bi|
2i[1 + |ai − bi|]

<

N∑
i=1

1

2i
= 1− 1

2N

So as N → ∞, the series d(a, b) is bounded by 1, and since it has nonnegative
terms, this means that it converges. Next, d satisfies the axioms of a metric:

1. definiteness: Each term |ai−bi|
2i[1+|ai−bi|] is non-negative for all i ∈ N, so

the series will converge to a nonnegative limit. Moreover, the partial
sums are an ascending sequence, so if for any i ∈ N it holds ai ̸= bi, then

d(ai, bi) > 0, hence |ai−bi|
2i[1+|ai−bi|] > 0, then the limit will be strictly positive.

So d(a, b) = 0 ⇐⇒ ∀i ∈ N : ai = bi ⇐⇒ a = b.

2. symmetry: d(a, b) = limN→∞
∑N

i=1
|ai−bi|

2i[1+|ai−bi|] = limN→∞
∑N

i=1
di(bi,ai)

2i[1+di(bi,ai)]
=

d(b, a) since the equality holds term-wise by symmetry of every di.

3. triangle inequality: We show that for sequences (ai)i∈N, (bi)i∈N, (ci)i∈N
it holds term-wise, that:

|a− b|
2i[1 + |a− b|]

≤ |a− c|
2i[1 + |a− c|]

+
|b− c|

2i[1 + |b− c|]

Which, dividing by 2i > 0 and setting v = a− c, w = b− c, is equivalent
to showing:

|v + w|
2i[1 + |v + w|]

≤ |v|
2i[1 + |v|]

+
|w|

2i[1 + |w|]
For all v, w ∈ R. We distinguish two cases:

• If v, w have the same sign, then |v + w| = |v|+ |w|, so that:

|v + w|
1 + |v + w|

=
|v|

1 + |v|+ |w|
+

|w|
1 + |v|+ |w|

≤ |v|
1 + |v|

+
|w|

1 + |w|

• If v, w have opposite sign, then assume w.l.o.g. that |v| ≥ |w|. Then
|v + w| = |v| − |w| ≤ |v|; moreover, if 0 ≤ t ≤ s, then

0 ≤ t

1 + t
= 1− 1

1 + t
≤ 1− 1

1 + s
=

s

1 + s

Therefore, with t = |v + w| and s = |v|:

|v + w|
1 + |v + w|

≤ |v|
1 + |v|

≤ |v|
1 + |v|

+
|w|

1 + |w|
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This concludes the proof, since we conclude d(a, b) ≤ d(a, c) + d(b, c) by
the termwise inequality for each i ∈ N.
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